

# Datasheet SFC5500 mass flow controller and SFM5500 mass flow meter Datasheet – V3

- Excellent accuracy and repeatability (0.8% / 0.1% of setpoint respectively)
- Very wide control and measurement range (<0.1% 100% full scale)</li>
- G <sup>1</sup>/<sub>4</sub>" flange compatible with a broad range of connectors: e.g. Swagelok, Legris, Festo
- Calibrated for multiple gases (Air, N<sub>2</sub>, O<sub>2</sub>, H<sub>2</sub>, He, CH<sub>4</sub>, N<sub>2</sub>O, Ar, CO<sub>2</sub>)
- Digital interface with temperature-compensated output
- Ultra-fast settling time (<100 ms)</li>
- Pressure resistance up to 10 bar
- Mean Time Between Failures (MTBF) 169 years
- No drift and no re-calibration required in the field
- NIST-traceable calibration
- EK-F5x evaluation kit for quick and easy testing

SFC5500 (10 mm Legis connector)

000

SFM5500 (6 mm Legis connector)

Haaa

EK-F5x Evaluation Kit for SFC5500 and SFM5500

# Unsurpassed CMOSens® Technology

The heart of SFC5500 and SFM5500 products is the unsurpassed Sensirion CMOSens® technology. It combines a high precision sensor element with state-of-the-art signal processing on a single chip and thereby providing an accurately calibrated and temperature compensated signal (Figure 1). Thanks to this sensor technology, SFC5500 and SFM5500 achieve unmatched ratings for speed, accuracy and repeatability at very attractive system cost. Due to the excellent long-term stability of CMOSens® chips, no recalibration is required.

The SFC5500 offers ultra-fast settling time and high control range. SFC5500 and SFM5500 are factory calibrated for multiple gases and combine smart features such as gas recognition and self-test capability. Finally,

they offer high flexibility regarding mechanical connectors, which can be exchanged with off-the-shelf components.

The brilliant performance of SFC5500 and SFM5500 products make them the best choice for a wide range of applications, such as analytical instrumentation, coating/etching equipment, medical equipment, process automation and gas mixing to name a few.



Figure 1: CMOSens® flow sensor diagram.

CMOSens® SFC5500 Mass Flow Controller for Gases





Figure 2: Block diagram CMOSens® SFC5500 mass flow controller.

# **Introductory Description**

CMOSens<sup>®</sup> SFC5500 and SFM5500 measure gas mass flow by the calorimetric principle based on heat transfer. A heater element on a thermally insulated membrane and two thermopiles up-stream and downstream are integrated on a single silicon chip. In the presence of gas flow, the temperature distribution up- and downstream is disturbed. This asymmetry is then measured. The measurement area as well as the A/D-converter and further signal processing are based on a single chip using CMOS standard processes (see Figure 3).

MEMS-based CMOSens<sup>®</sup> technology enables a larger cross section (about 1.5x1 mm<sup>2</sup>) of the gas channel than bypass capillary diameter in conventional mass flow controllers (0.1 to 0.5 mm). This channel design makes the device more robust against particles, clogging and humidified gases. Due to the compact single-chip design and its mounting between metal parts, CMOSens<sup>®</sup>-based sensors are very resistant to electromagnetic disturbances (EMC).

The minimal thermal mass of the membrane results in an ultra-fast sensor response time of 3-4 ms. Since the whole design of the amplification, A/D conversion, digital linearization and temperature compensation is matched to the sensor speed, a fully compensated flow

measurement value can be delivered every millisecond. Combined with advanced control algorithms running on the on-board microprocessor, SFC5500 offers greatly reduced settling times compared to conventional mass flow controllers (see Figure 2).

Furthermore, a special arrangement of the two temperature sensors, on-chip temperature compensation and the minimization of noise sources lead to unbeatable performance with regards to repeatability and accuracy over a large dynamic range. Thanks to its flawless design, the SFC5500 mass flow controllers and SFM5500 mass flow meters show zerodrift performance and control true mass flow independently of the ambient temperature and pressure changes.





# 1 CMOSens® SFC5500 / SFM5500 mass flow controller / meter performance

Table 1: Overview of CMOSens<sup>®</sup> SFC5500 Mass Flow Controllers and SFM5500 Mass Flow Meters X stands for C=controller, or M=Meter. All data, unless otherwise noted, apply for the following calibration conditions: horizontal mounting position (el. connector on top), downmount connection, temperature 20°C, Nitrogen (N<sub>2</sub>), 3.0 bar overpressure (inlet: 4.0 bar absolute) against atmosphere (outlet: 1.0 bar absolute) for SFC5500 and <0.2 bar overpressure for SFM5500.

| Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | Air & N <sub>2</sub> * | <b>O</b> <sub>2</sub>                  | H <sub>2</sub>                                                                                                                           | He*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CH4                                                                                                   | N <sub>2</sub> O                                                                                                             | Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO <sub>2</sub> *                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     | 0<br>(default)         | 1                                      | 2                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                     | 5                                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                        |
| Full scale flow [sccm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SFX5500-50sccm                                                                                                                                                                                                                                                      | 50                     | 50                                     | 200                                                                                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                                                                                    | 50                                                                                                                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50                                                                                                                                       |
| Accuracy <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>[% s.p.]</b> <sup>2</sup>                                                                                                                                                                                                                                        | 2                      | 3                                      | 4                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                     | 4                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                        |
| whichever is greater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [% FS] <sup>3</sup>                                                                                                                                                                                                                                                 | 0.2                    | 0.3                                    | 0.4                                                                                                                                      | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4                                                                                                   | 0.4                                                                                                                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2                                                                                                                                      |
| Repeatability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [% s.p.]                                                                                                                                                                                                                                                            |                        |                                        | -                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                   |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |
| whichever is greater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [% FS]                                                                                                                                                                                                                                                              |                        |                                        |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                  |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SFX5500-0.5slm                                                                                                                                                                                                                                                      | 0.5                    | 0.5                                    | 2.0                                                                                                                                      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5                                                                                                   | 0.2                                                                                                                          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2                                                                                                                                      |
| Full scale flow [slm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SFX5500-2slm                                                                                                                                                                                                                                                        | 2.0                    | 2.0                                    | 5.0                                                                                                                                      | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                                                                                                   | 1.0                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SFX5500-10slm                                                                                                                                                                                                                                                       | 10                     | 10                                     | 10                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                    | 5.0                                                                                                                          | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.0                                                                                                                                      |
| Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [% s.p.]                                                                                                                                                                                                                                                            | 0.80                   | 2.0                                    | 3.0                                                                                                                                      | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                                                                                                   | 3.0                                                                                                                          | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8                                                                                                                                      |
| whichever is greater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [% FS]                                                                                                                                                                                                                                                              | 0.08                   | 0.20                                   | 0.30                                                                                                                                     | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.30                                                                                                  | 0.30                                                                                                                         | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.08                                                                                                                                     |
| Repeatability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [% s.p.]                                                                                                                                                                                                                                                            |                        |                                        |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10                                                                                                  |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |
| whichever is greater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [% FS]                                                                                                                                                                                                                                                              |                        |                                        |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                  |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |
| Full scale flow [slm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SFC5500-200slm                                                                                                                                                                                                                                                      | 200                    | 160                                    |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | not ca                                                                                                | ibrated                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |
| Accuracy <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [% s.p.]                                                                                                                                                                                                                                                            | 1.0                    | 2.0                                    |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |
| whichever is greater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [% FS]                                                                                                                                                                                                                                                              | 0.10                   | 0.20                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | not d                                                                                                 | ofinod                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |
| Repeatability <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [% s.p.]                                                                                                                                                                                                                                                            | 0.                     | 2                                      |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | notu                                                                                                  | enneu                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |
| whichever is greater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [% FS]                                                                                                                                                                                                                                                              | 0.0                    | 12                                     |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |
| Whichever is greater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                     | 0.0                    | 72                                     |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |
| Snecifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion                                                                                                                                                                                                                                                                | 0.0                    |                                        | ۱<br>F                                                                                                                                   | low range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Init                                                                                                                                     |
| Specifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ntion                                                                                                                                                                                                                                                               | 50 sccn                | n 0.5                                  | F<br>slm                                                                                                                                 | Flow range<br>2 slm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 slm                                                                                                | 200 slm                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jnit                                                                                                                                     |
| Specifica<br>Typical setting time (Sl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ition<br>FC only) <sup>6</sup>                                                                                                                                                                                                                                      | 50 sccn                | n 0.5                                  | F<br>slm                                                                                                                                 | Flow range<br>2 slm<br>< 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 slm                                                                                                | 200 slm                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jnit<br>ms                                                                                                                               |
| Specifica<br>Typical setting time (SI<br>Measurement frequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion<br>FC only) <sup>6</sup>                                                                                                                                                                                                                                       | 50 sccn                | n 0.5                                  | F<br>slm                                                                                                                                 | Flow range<br>2 slm<br>< 100<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 slm                                                                                                | 200 slm                                                                                                                      | - (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Jnit</b><br>ms<br>Hz                                                                                                                  |
| Typical setting time (SI<br>Measurement frequenc<br>Control / measurement f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ttion<br>FC only) <sup>6</sup><br>cy<br>range (SFC / SFM)                                                                                                                                                                                                           | 50 sccn                | n 0.5<br><0.1                          | F<br>slm  <br>% - 100                                                                                                                    | Flow range<br>2 slm<br>< 100<br>1000<br>0% full scal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>10 sim</b><br>e (1000:1)                                                                           | 200 slm                                                                                                                      | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jnit<br>ms<br>Hz                                                                                                                         |
| Specifica<br>Typical setting time (SI<br>Measurement frequence<br>Control / measurement in<br>Operating temp. (ambig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rtion<br>FC only) <sup>6</sup><br>ry<br>range (SFC / SFM)<br>ent & gas)                                                                                                                                                                                             | 50 sccn                | n 0.5<br><0.1                          | F<br>slm  <br>% - 100                                                                                                                    | Flow range           2 slm           < 100           1000           0% full scal           50 / 32 - 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>10 slm</b><br>e (1000:1)<br>22                                                                     | 200 slm                                                                                                                      | - l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jnit<br>ms<br>Hz<br>C/°F                                                                                                                 |
| Specifica<br>Typical setting time (SI<br>Measurement frequence<br>Control / measurement in<br>Operating temp. (ambie<br>Temp. coeff. Zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ttion<br>FC only) <sup>6</sup><br>Ey<br>range (SFC / SFM)<br>ent & gas)                                                                                                                                                                                             | 50 sccn                | n 0.5<br><0.1                          | <b>slm F</b><br>slm <b></b><br>% - 100                                                                                                   | Flow range           2 slm           < 100           1000           0% full scal           50 / 32 - 1:           0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>10 slm</b><br>e (1000:1)<br>22                                                                     | 200 slm                                                                                                                      | - l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jnit<br>ms<br>Hz<br>C/°F<br>FS/°C                                                                                                        |
| Specifica<br>Typical setting time (SI<br>Measurement frequenc<br>Control / measurement fr<br>Operating temp. (ambin<br>Temp. coeff. Zero<br>Temp. coeff. Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ttion<br>FC only) <sup>6</sup><br>cy<br>range (SFC / SFM)<br>ent & gas)                                                                                                                                                                                             | 50 sccn                | n 0.5<br><0.1                          | F<br>slm  <br><u>% - 100</u><br>0 –                                                                                                      | Iow range           2 slm           < 100           1000           0% full scal           50 / 32 - 12           0.005           0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>10 slm</b><br>e (1000:1)<br>22                                                                     | 200 slm                                                                                                                      | - l<br>- C<br>- C<br>- C<br>- C<br>- C<br>- C<br>- C<br>- C<br>- C<br>- C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jnit<br>ms<br>Hz<br>C / °F<br>                                                                                                           |
| Specifica<br>Typical setting time (SI<br>Measurement frequenc<br>Control / measurement frequenc<br>Control / measurement frequency<br>Coperating temp. (ambid<br>Temp. coeff. Zero<br>Temp. coeff. Span<br>Warming up time <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ttion<br>FC only) <sup>6</sup><br>cy<br>range (SFC / SFM)<br>ent & gas)                                                                                                                                                                                             | 50 sccn                | n 0.5                                  | <b>sim</b><br><u>8 - 100</u><br>0 -                                                                                                      | Iow range           2 slm           < 100           1000           0% full scal           50 / 32 - 1:           0.005           0.06           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 slm<br>e (1000:1)<br>22                                                                            | 200 slm                                                                                                                      | - l<br>°(<br>% F<br>% s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jnit<br>ms<br>Hz<br>C/°F<br>S/°C<br>.p. / °C<br>s                                                                                        |
| Specifica<br>Typical setting time (SI<br>Measurement frequence<br>Control / measurement i<br>Operating temp. (ambin<br>Temp. coeff. Zero<br>Temp. coeff. Span<br>Warming up time <sup>7</sup><br>Pressure drop at full flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ttion<br>FC only) <sup>6</sup><br>cy<br>range (SFC / SFM)<br>ent & gas)<br>ow N <sub>2</sub> / Air (SFC)                                                                                                                                                            | 50 sccn                | n 0.5<br><0.1                          | F<br>sim  <br>% - 100<br>0 -                                                                                                             | Flow range           2 slm           < 100           1000           0% full scal           50 / 32 - 1:           0.005           0.06           1           < 0.1 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 slm<br>e (1000:1)<br>22<br>< 1.4 / 21                                                              | 200 slm                                                                                                                      | - l<br>°(<br>% F<br>% s<br>2 bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jnit<br>ms<br>Hz<br>C/°F<br>S/°C<br>.p. /°C<br>s<br>-/ psig                                                                              |
| Specifica<br>Typical setting time (SI<br>Measurement frequence<br>Control / measurement in<br>Operating temp. (ambin<br>Temp. coeff. Zero<br>Temp. coeff. Span<br>Warming up time <sup>7</sup><br>Pressure drop at full flo<br>Pressure drop at full flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ttion<br>FC only) <sup>6</sup><br>Ey<br>range (SFC / SFM)<br>ent & gas)<br>Dow N <sub>2</sub> / Air (SFC)<br>Dow N <sub>2</sub> / Air (SFM)                                                                                                                         | 50 sccn                | n 0.5<br><0.1                          | F<br>slm  <br>% - 100<br>0 -<br>7 / 11  <br>7 / 11  <br>1 / 1                                                                            | Iow range           2 slm           < 100           1000           0% full scal           50 / 32 - 1:           0.005           0.06           1           < 0.1 / 1           < 0.1 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 slm<br>e (1000:1)<br>22<br>< 1.4 / 21<br>< 0.1 / 1                                                 | 200 slm                                                                                                                      | - l<br>- C<br>- % F<br>- % S<br>- 2 bar<br>bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jnit<br>ms<br>Hz<br>C/°F<br>S/°C<br>.p. /°C<br>s<br>·/ psig<br>·/ psig                                                                   |
| Specifica<br>Typical setting time (SI<br>Measurement frequenc<br>Control / measurement frequence<br>Control / measurement frequence<br>Temp. coeff. Span<br>Warming up time <sup>7</sup><br>Pressure drop at full fle<br>Maximum input pressure | ttion<br>FC only) <sup>6</sup><br>range (SFC / SFM)<br>ent & gas)<br>pow N <sub>2</sub> / Air (SFC)<br>pow N <sub>2</sub> / Air (SFM)<br>re <sup>8</sup>                                                                                                            | 50 sccn                | n 0.5<br><0.1                          | F<br>slm  <br>% - 100<br>0 -<br>7 / 11  <br>1 / 1                                                                                        | Iow range           2 slm           < 100           1000           0% full scal           50 / 32 - 12           0.005           0.06           1           < 0.1 / 1           < 0.1 / 1           10 / 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 slm<br>e (1000:1)<br>22<br>< 1.4 / 21<br>< 0.1 / 1                                                 | 200 slm                                                                                                                      | - l<br>- °C<br>- | Jnit<br>ms<br>Hz<br>C / °F<br>- S / °C<br>.p. / °C<br>s<br>- / psig<br>- / psig<br>- / psig                                              |
| Specifica<br>Typical setting time (SI<br>Measurement frequence<br>Control / measurement frequence<br>Temp. coeff. Zero<br>Temp. coeff. Span<br>Warming up time <sup>7</sup><br>Pressure drop at full fle<br>Maximum input pressure<br>Maximum differential p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ttion<br>FC only) <sup>6</sup><br>range (SFC / SFM)<br>ent & gas)<br>pw N <sub>2</sub> / Air (SFC)<br>pw N <sub>2</sub> / Air (SFM)<br>re <sup>8</sup><br>ressure <sup>9</sup>                                                                                      | 50 sccn                | n 0.5<br><0.1                          | F<br>slm  <br>% - 100<br>0 -<br>7/11  <br>1/1  <br>5/73 (SF                                                                              | Iow range           2 slm           < 100           1000           0% full scal           50 / 32 - 1:           0.005           0.06           1           < 0.1 / 1           < 0.1 / 1           10 / 145           C), 10 / 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 slm<br>e (1000:1)<br>22<br>< 1.4 / 21<br>< 0.1 / 1<br>5 (SFM)                                      | 200 slm                                                                                                                      | l Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>C  | Jnit<br>ms<br>Hz<br>C/°F<br>S/°C<br>.p. /°C<br>s<br>·/ psig<br>·/ psig<br>·/ psig<br>·/ psig<br>·/ psig                                  |
| Specifica<br>Typical setting time (SI<br>Measurement frequence<br>Control / measurement i<br>Operating temp. (ambin<br>Temp. coeff. Zero<br>Temp. coeff. Span<br>Warming up time <sup>7</sup><br>Pressure drop at full flo<br>Maximum input pressu<br>Maximum differential p<br>Leakage external (oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ttion<br>FC only) <sup>6</sup><br>range (SFC / SFM)<br>ent & gas)<br>by N <sub>2</sub> / Air (SFC)<br>by N <sub>2</sub> / Air (SFM)<br>re <sup>8</sup><br>ressure <sup>9</sup><br>h valve) <sup>10</sup>                                                            | 50 sccn                | n 0.5<br><0.1                          | F<br>slm<br>% - 100<br>0 -<br>7 / 11<br>1 / 1<br>1 / 1<br>5 / 73 (SF<br>9 x 10 <sup>-</sup>                                              | Iow range           2 slm           < 100           1000           0% full scal           50 / 32 - 1:           0.005           0.06           1           < 0.1 / 1           < 0.1 / 1           10 / 145           C), 10 / 14!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 slm<br>e (1000:1)<br>22<br>< 1.4 / 21<br>< 0.1 / 1<br>5 (SFM)                                      | 200 slm                                                                                                                      | 2 bar<br>bar<br>bar<br>bar<br>bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jnit<br>ms<br>Hz<br>C/°F<br>S/°C<br>.p. /°C<br>s<br>s<br>·/ psig<br>·/ psig<br>·/ psig<br>·/ psig<br>·/ psig<br>r/ lsig<br>r/ lsig       |
| Specifica<br>Typical setting time (SI<br>Measurement frequence<br>Control / measurement in<br>Operating temp. (ambin<br>Temp. coeff. Zero<br>Temp. coeff. Span<br>Warming up time <sup>7</sup><br>Pressure drop at full flor<br>Pressure drop at full flor<br>Maximum input pressu<br>Maximum differential p<br>Leakage external (oper<br>Leakage through close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ttion<br>FC only) <sup>6</sup><br>y<br>range (SFC / SFM)<br>ent & gas)<br>ow N <sub>2</sub> / Air (SFC)<br>ow N <sub>2</sub> / Air (SFM)<br>re <sup>8</sup><br>ressure <sup>9</sup><br>n valve) <sup>10</sup><br>d valve (SFC)                                      | 50 sccn                | n 0.5<br><0.1                          | F<br>slm  <br>% - 100<br>0 -<br>7 / 11  <br>1 / 1  <br>5 / 73 (SF<br>9 x 10-                                                             | Iow range           2 slm           < 100           1000           0% full scal           50 / 32 - 1:           0.005           0.06           1           < 0.1 / 1           < 0.1 / 1           10 / 145           C), 10 / 14!           9           1 x 10-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 slm<br>e (1000:1)<br>22<br>< 1.4 / 21<br>< 0.1 / 1<br>5 (SFM)                                      | 200 slm                                                                                                                      | 2 bar<br>bar<br>bar<br>bar<br>bar<br>bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jnit<br>ms<br>Hz<br>C/°F<br>S/°C<br>.p. /°C<br>s<br>·/ psig<br>·/ psig<br>·/ psig<br>·/ psig<br>r l/s He<br>r l/s He                     |
| Specifica<br>Typical setting time (SI<br>Measurement frequenc<br>Control / measurement i<br>Operating temp. (ambid<br>Temp. coeff. Zero<br>Temp. coeff. Span<br>Warming up time <sup>7</sup><br>Pressure drop at full flo<br>Pressure drop at full flo<br>Maximum input pressu<br>Maximum differential p<br>Leakage external (oper<br>Leakage through close<br>Mounted fittings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ttion<br>FC only) <sup>6</sup><br>cy<br>range (SFC / SFM)<br>ent & gas)<br>pow N <sub>2</sub> / Air (SFC)<br>pow N <sub>2</sub> / Air (SFC)<br>pow N <sub>2</sub> / Air (SFM)<br>re <sup>8</sup><br>ressure <sup>9</sup><br>n valve) <sup>10</sup><br>d valve (SFC) | 50 sccn                | n 0.5<br><0.1                          | F<br>slm  <br>% - 100<br>0 -<br>7 / 11  <br>1 / 1  <br>5 / 73 (SF<br>9 x 10-<br>9 x 10-<br>gris OD 6                                     | Iow range           2 slm           < 100           1000           0% full scal           50 / 32 – 12           0.005           0.06           1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1 <th>10 slm<br/>e (1000:1)<br/>22<br/>&lt; 1.4 / 21<br/>&lt; 0.1 / 1<br/>5 (SFM)</th> <th>200 slm<br/>200 slm<br/>4.9 / 72<br/>n/a<br/>9 x 10<sup>-6</sup></th> <th>2 bar<br/>bar<br/>bar<br/>bar<br/>bar<br/>bar</th> <th>Jnit<br/>ms<br/>Hz<br/>C/°F<br/>S/°C<br/>.p./°C<br/>s<br/>/ psig<br/>/ psig<br/>/ psig<br/>r / psig<br/>r l/s He<br/>r l/s He</th> | 10 slm<br>e (1000:1)<br>22<br>< 1.4 / 21<br>< 0.1 / 1<br>5 (SFM)                                      | 200 slm<br>200 slm<br>4.9 / 72<br>n/a<br>9 x 10 <sup>-6</sup>                                                                | 2 bar<br>bar<br>bar<br>bar<br>bar<br>bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jnit<br>ms<br>Hz<br>C/°F<br>S/°C<br>.p./°C<br>s<br>/ psig<br>/ psig<br>/ psig<br>r / psig<br>r l/s He<br>r l/s He                        |
| Specifica<br>Typical setting time (SI<br>Measurement frequence<br>Control / measurement in<br>Operating temp. (ambin<br>Temp. coeff. Zero<br>Temp. coeff. Span<br>Warming up time <sup>7</sup><br>Pressure drop at full fle<br>Pressure drop at full fle<br>Maximum input pressu<br>Maximum differential p<br>Leakage external (oper<br>Leakage through close<br>Mounted fittings<br>Flange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ttion<br>FC only) <sup>6</sup><br>range (SFC / SFM)<br>ent & gas)<br>$N_2$ / Air (SFC)<br>$N_2$ / Air (SFC)<br>$N_2$ / Air (SFM)<br>$re^8$<br>$ressure^9$<br>$n valve)^{10}$<br>d valve (SFC)                                                                       | 50 sccn                | n 0.5<br><0.1                          | F<br>slm<br>% - 100<br>0 -<br>7 / 11<br>1 / 1<br>5 / 73 (SF<br>9 x 10 <sup>-1</sup><br>9 x 10 <sup>-1</sup><br>gris OD 6<br>G 1/4        | Iow range           2 slm           < 100           1000           0% full scal           50 / 32 - 1:           0.005           0.06           1           < 0.1 / 1           < 0.1 / 1           10 / 145           C), 10 / 145           *           1 x 10-6           5 mm           " threading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 slm<br>e (1000:1)<br>22<br>< 1.4 / 21<br>< 0.1 / 1<br>5 (SFM)<br>Le<br>Exchangeat                  | 200 slm<br>200 slm<br>4.9 / 72<br>n/a<br>9 x 10 <sup>-6</sup><br>egris OD 10 mr<br>ole fittings                              | l C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jnit<br>ms<br>Hz<br>C / °F<br>S / °C<br>.p. / °C<br>s<br>- / psig<br>- / psig<br>- / psig<br>- / psig<br>r l/s He<br>r l/s He            |
| Specifica<br>Typical setting time (SI<br>Measurement frequence<br>Control / measurement i<br>Operating temp. (ambin<br>Temp. coeff. Zero<br>Temp. coeff. Span<br>Warming up time <sup>7</sup><br>Pressure drop at full flo<br>Maximum input pressure<br>Maximum differential p<br>Leakage external (oper<br>Leakage through close<br>Mounted fittings<br>Flange<br>Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ttion<br>FC only) <sup>6</sup><br>range (SFC / SFM)<br>ent & gas)<br>$DW N_2 / Air (SFC)$<br>$DW N_2 / Air (SFM)$<br>$re^8$<br>$ressure^9$<br>$n valve)^{10}$<br>d valve (SFC)                                                                                      | 50 sccn                | n 0.5<br><0.1<br>1 < 0.<br>1 < 0.<br>€ | F<br>slm<br>% - 100<br>0 -<br>7 / 11<br>1 / 1<br>5 / 73 (SF<br>9 x 10 <sup>-1</sup><br>9 x 10 <sup>-1</sup><br>gris OD 6<br>G 1/4<br>Dig | Iow range           2 slm           < 100           1000           0% full scal           50 / 32 - 1:           0.005           0.06           1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 1           < 0.1 / 145                 1 x 10-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 slm<br>e (1000:1)<br>22<br>< 1.4 / 21<br>< 0.1 / 1<br>5 (SFM)<br>Le<br>Exchangeat<br>, IO-Link, De | 200 slm<br>200 slm<br>4.9/72<br>n/a<br>9 x 10 <sup>-6</sup><br>9 x 10 <sup>-6</sup><br>9 c 10 mr<br>ole fittings<br>eviceNet | l °C<br>% F<br>% S<br>2 bar<br>bar<br>bar<br>bar<br>bar<br>mba<br>mba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jnit<br>ms<br>Hz<br>C / °F<br>S / °C<br>.p. / °C<br>s<br>- / psig<br>- / psig<br>- / psig<br>- / psig<br>r //sig<br>r l/s He<br>r l/s He |

<sup>\*</sup> Air, He and CO<sub>2</sub> are calibration gasses. Calibration for Air and N<sub>2</sub> is identical. The calibration of the remaining gasses is a model. <sup>1</sup> Including offset, non-linearity and hysteresis. Measured against NIST-traceable reference

<sup>&</sup>lt;sup>2</sup> in % of set point (s.p.) = measured value (m.v.) = rate = reading value

<sup>&</sup>lt;sup>3</sup> in % of Full Scale (FS) flow

<sup>&</sup>lt;sup>4</sup> Valid until 100 slm setpoint. Accuracy deteriorates slightly in 100-200 slm region.

<sup>&</sup>lt;sup>5</sup> Valid until 100 slm setpoint. Repeatability deteriorates slightly in 100-200 slm region.

 $<sup>^{6}</sup>$  Step answer from 10% to 100% of full scale within  $\pm 5\%$  of setpoint.

 $<sup>^7</sup>$  to within  $\pm 2$  % of setpoint

<sup>&</sup>lt;sup>8</sup> Pressure between flow inlet and ambient

<sup>&</sup>lt;sup>9</sup> Pressure between flow inlet and flow outlet. For availability of higher differential pressure option, contact Sensirion

<sup>&</sup>lt;sup>10</sup> External leak integrity measured with Swagelock connectors. It is not guaranteed with push-in connectors such as Legris



### 1.1 Gas calibration

SFC5500 and SFM55000 are factory-calibrated for multiple gasses. Table 1 lists the available calibrations and the calibration addresses saved in internal memory of the MFC. The desired calibration can be selected by the user. Please see the application notes describing the different interfaces, quick start guide or the Evaluation Kit documentation for instructions on how to activate a desired calibration. These can be found on <u>www.sensirion.com/sfc5500</u>.

Please note that the maximum flow rate achievable with each MFC is strongly dependent on the gas measured. Table 1 lists the maximum flow rates for all gasses for which the products have been calibrated.

The calibration for Air and  $N_2$  is identical. It can be used with both gasses with the same result.

### 1.2 Accuracy

Accuracy describes how precisely the mass flow controller / meter is able to control / measure flow rate with respect to the real flow of a given gas. Accuracy is mostly determined by the quality of the calibration and can be different for each calibration gas.



Figure 4: Accuracy comparison of the CMOSens® SFC5500 device compared to a typical thermal mass flow controller.

For example: with mass flow controller set point of 10 slm and a real flow rate measured by an external reference of 10.08 slm, the set point accuracy would be calculated as:

$$Accuracy = \frac{10.08 - 10}{10.08} = 0.8\%$$

Figure 4 compares the set point accuracy of a conventional mass flow controller with a CMOSens® SFC5500. Typically, an accuracy of 1% full scale (FS) is stated for mass flow controllers using conventional sensor technology. Especially at low flow rates the CMOSens® technology reaches superior performance.

### 1.3 Repeatability

Unlike accuracy, repeatability is not influenced by calibration quality and is directly related to the build quality of the mass flow controller / meter. It describes how reliably mass flow controller is able to reach a given setpoint (applied repeatably). For mass flow meter, it describes, how reliably the instrument measures the same flow repeatably.

For example: if a mass flow meter measures real flow of 10 slm multiple times and the resulting flow measurement results follow a Gaussian distribution centered around 9.97 slm with 0.01 standard deviation, then the repeatability can be calculated as:

$$Repeatability = \frac{0.01}{9.97} = 0.1\%$$

Generally, for mass flow controllers / meters repeatability is better than accuracy. For mass flow controllers, in applications where an additional calibration or feedback loop exists, it is possible to relay on repeatability rather than accuracy of mass flow controller. One example would be an optimized process, where the setpoint value of mass flow controller is fine-tuned to give the desired outcome. In such case, it is not important that the actual flow is close to the set point flow – instead it is important that the optimized set point can be achieved repeatably.

CMOSens® SFC5500 shows a superior performance compared to conventional mass flow controllers with typical repeatability of 0.2% full scale (FS) (Figure 5).



Figure 5: Repeatability comparison of the CMOSens® SFC5500 device compared to a typical thermal mass flow controller.

Accuracy and repeatability at high flows are limited by set point error and at lower end – by the full scale error. Figure 6 demonstrates this.



Figure 6 Accuracy and repeatability at different set points.

# 1.4 Settling time

The CMOSens® SFC5500 mass flow controller has an ultra-fast settling time. Figure 7 shows the typical response time of the SFC5500 in comparison to a mass flow controller using conventional sensor technology.



Figure 7: Settling time of the SFC5500 vs. typical thermal mass flow controller.

### 1.5 Wide control and measurement range

Ultra-wide control range of the SFC5500 brings a decisive benefit in applications with a wide dynamic range of gas flows. Instead of two devices used for high flow and low flow ranges, a single SFC5500 device can efficiently cover a flow range of three orders of magnitude.

Control and measurement range is defined as <0.1% - 100% full scale. This means that a mass flow controller with e.g. 10 slm full scale flow, can control flows lower than 0.01 slm.

### 1.6 Pressure drop

Mass flow controllers need pressurized gas sourced to operate. Pressure drop is generated, when gas passes through a mass flow controller. When evaluating a mass flow controller, it is important to verify that at maximum required flow rate, for a given gas the pressure drop will be smaller than the inlet pressure – otherwise the desired maximum flow rate will not be possible to achieve.

=NSIRI(

Mass flow meters have generally much lower pressure drop due to the absence of the valve and hence this is rarely a practical problem.

Figure 8 shows the maximum achievable flow for different variants of SFC5500 as a function of pressure drop. %FS refers to the percentage of the Full Scale flow defined for Air/N<sub>2</sub>.



Figure 8 Maximum achievable flow rate at different pressure drops.

At the same setpoint, for gasses heavier than air, the pressure drop would generally be higher. For gasses lighter than air – it would be lower.

# 1.7 Gas recognition

SFC5500 and SFM5500 employ gas recognition functionality, which can be implemented by the user to display an alert when an activated calibration does not match the gas in line. For further explanation, please see documentation at <u>www.sensirion.com/sfc5500</u>.



# 2 Construction details

### 2.1 Fittings

SFC5500 and SFM5500 are designed with a universal G  $\frac{1}{4}$  flange, which enables an easy exchange of fittings (Figure 9). While these instruments are factory-fitted with Legris connectors, the user can easily exchange the fittings by themselves. This does not impact the performance of the device. Any fittings compatible with G  $\frac{1}{4}$ " flange can be installed. For an example list of compatible fittings, please see the application note on www.sensirion.com/sfc5500.



Figure 9: SFC5500 with the fittings removed

# 2.2 Packaging principle and sealing

To guarantee a vacuum-proof housing of the sensor and the flow path, several patented technologies are used. The CMOSens<sup>®</sup> chip itself is placed vacuumtight in a stainless steel package that is connected via O-ring sealing to the aluminum body. The packaging allows SFC5500 and SFM5500 to operate under high input pressure (10 bar / 145 psi) between gas input and ambient (not same as maximum 5 bar / 73 psi between gas input/output for mass flow controllers!).

The electrical connection from the chip to the main controller board uses vacuum-tight glass feed through pins. This packaging method ensures high reliability and tightness for all kinds of gases (see Figure 10).



Figure 10: Vacuum-tight glass feed through (longitudinal view)

### 2.3 Wetted materials & compatibility

The packaging method ensures that a minimum number of inert materials are wetted by the media. Table 2 gives an overview of the materials wetted by the gas. For high volume OEM applications different specialized materials for the body, valve and sealing can be used with sister variants, SFC5400 / SFM5500 or SFC5300 / SFM5300.

Table 2: Overview of Wetted Materials.

| Part             | Wetted Material                                                                                         |
|------------------|---------------------------------------------------------------------------------------------------------|
| Body             | Aluminum                                                                                                |
| Sensor element   | Silicon (Si)<br>Silicon oxide (SiOx)<br>Silicon nitride (Si₃N₄)<br>Stainless steel<br>Glass<br>Glob top |
| Sealing          | FKM                                                                                                     |
| Valve (SFC only) | Brass, FKM                                                                                              |

# 2.4 Safety instructions

#### 2.4.1 Toxic gases

The whole gas assembly must be checked for leakage before applying toxic gas to the device.

#### 2.4.2 Aggressive or corrosive gases

Please make sure that the gases used are compatible with the wetted materials listed in this chapter. In case of doubt, please contact Sensirion for further advice. Corrosive gasses can damage the sealing or the CMOSens® chip.

#### 2.4.3 Explosive gases

The maximum heating energy of the sensor is limited to 12 mW. The CMOSens® sensor element is tested according to EN 50020 chapter 6.2.4 b). Sensirion guarantees the safe use of gases of the classes T1 or T2 (ignition temperature < 300 °C). This includes also mixtures of air or oxygen with hydrogen or hydrocarbons. However, SFC5500 and SFM55000 are not designed for the use in hazardous areas (EN 60079-10) where explosive gases can occur outside of the device.

# 3 Electrical and communication specifications

### 3.1 Connector and pin layout

SFC5500 and SFM5500 feature the following digital communication interfaces:

- RS485
- DeviceNet
- IO-Link

Detailed specification of RS485 protocol can be found at <u>www.sensirion.com/sfc5500</u>. The default address of SFC5500 and SFM5500 is "0".

DeviceNet and IO-Link protocols require a larger implementation effort and should be considered only in the context of OEM projects.

The electrical connector of the SFC5500 and SFM5500 is a standard HD Sub-D 9pin. This enables an easy and reliable universal connection. See the pin layout in Figure 11. Attention: Do not connect PIN 9, as this might damage the controller.

#### 3.3 Electrical specifications

Table 3: Electrical characteristics

| CAN_H          |   | Do not connect        |
|----------------|---|-----------------------|
| CAN_L          |   | $IO_{-}$ link $(C/O)$ |
| +14 to +26 VDD |   |                       |
| GND            |   | RS485B (-)            |
|                |   | RS485A (+)            |
| GND            |   |                       |
|                | 1 |                       |
|                |   |                       |

Figure 11: Pinout of the digital interface (RS485, DeviceNet and IO-Link).

#### 3.2 Power supply

The SFC5500 /SFM5500 mass flow controllers / meters require a standard voltage supply of +15.0 to + 24.0 VDC. There are no stringent requirements for voltage ripple and stability because of the internal voltage regulation.

| Parameter                  | Conditions                           | Units |
|----------------------------|--------------------------------------|-------|
| Supply Voltage Range (VDD) | Тур. 15.0 – 24.0<br>Мах. 14.0 – 26.4 | VDC   |
| Electrical Connector       | Sub-D 9pin (male on device)          |       |
| PIN 9                      | Do not connect                       | -     |

Table 4: Current consumption

| Derometer                 | Conditions        | Typical value           | Units           |    |
|---------------------------|-------------------|-------------------------|-----------------|----|
| Farameter                 | Conditions        | 50 sccm, 0.5 slm, 2 slm | 10 slm, 200 slm |    |
| Max. Supply Current (SFC) | VDD = 15 / 24 VDC | 180 / 110               | 320 / 200       | mA |
| Max. Supply Current (SFM) | VDD = 15 / 24 VDC | 50                      | / 35            | ma |
| Standby current           | VDD = 15 / 24 VDC | 50                      | / 35            | mA |

#### Table 5: Electromagnetic compatibility

| Parameter                                                                                | Hall mark                                                | Notes                   | Applied values                           |
|------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------|------------------------------------------|
| Electromagnetic Compatibility /<br>Immunity in Industrial Environment:<br>(EN 61000-6-2) | EN 61000-4-2 Air discharge (ESD)                         |                         | $\pm$ 8 kV (air)<br>$\pm$ 4 kV (contact) |
|                                                                                          | EN 61000-4-6 High frequency electromag<br>radiation (HF) |                         | 10 V <sub>eff</sub>                      |
|                                                                                          | EN 61000-4-4                                             | Fast transients (burst) | $\pm$ 4 kV                               |



# 4 Physical dimensions and mounting information for SFC5500 and SFM5500

Physical dimensions and mounting information for SFC5500 and SFM5500 are provided in Figure 12 and Figure 13. All drawings are generated from 3D models available at <u>www.sensirion.com/sfc5500</u>.



Figure 12: Physical dimensions and mounting information for SFC5500 fitted with a) 6 mm, b) 10 mm Legris connectors. All units are in [mm].





Figure 13 Physical dimensions and mounting information for SFM5500 fitted with 6 mm LEgris connectors. All units are in [mm].

Table 6: Weight

| Devemeder                 | Va      | Unite   |       |
|---------------------------|---------|---------|-------|
|                           | SFC5500 | SFM5500 | Units |
| Mechanical                |         |         |       |
| Weight (Legris 6 mm OD)   | 270     | 240     | g     |
| Weight (Legris 10 mm OD)  | 290     | n/a     | g     |
| Weight (without fittings) | 250     | 220     | g     |

# 5 Flow units

SFC5500 / SFM5500 mass flow controllers / meters are calibrated in slm (standard liter per minute) or sccc (standard centimeter cube per minute) units. Please note the difference between "standard" and "norm" units – both are widely used. The differences between those are highlighted in Table 7.

| Typical flow unit |                                        | Reference condition |                       |  |
|-------------------|----------------------------------------|---------------------|-----------------------|--|
| Typical now u     | rint                                   | Gas Temperature     | Gas Pressure          |  |
| slm               | (standard liter per minute)            | 20 °C / 69° F       |                       |  |
| sccm              | (standard cubic centimeter per minute) | 20 C/00 F           | 1012 mbor / 11 60 noi |  |
| In/min            | (norm liter per minute)                | 0 °C / 22° E        | 1015 mbai / 14.09 psi |  |
| mln/min           | (norm milliliter per minute)           | 0 0/32 F            |                       |  |

CMOSens® SFC5500 Mass Flow Controller for Gases



Example: Relationship between:

| slm (20°C / 68°F, 1013 mbar) | and | In/min (0°C / 32°F, 1013 mbar) |
|------------------------------|-----|--------------------------------|
| 1 slm                        | =   | 0.932 In/min                   |
| 100 sccm                     | =   | 93.2 mln/min                   |

This relationship is gas independent. The 0.932 factor can be used for any gas.

# 6 **OEM** options

SFC5500 / SFM5500 mass flow controllers / meters are all special versions of Sensirion's SFC5400 and SFM5400 platform. The only difference is a slightly longer flanges of SFC5500 / SFM5500 to allow for exchangeable fittings. In case SFC5500 / SFM5500 does not meet exactly the requirements for a given application, Sensirion recommends looking at SFC5400 / SFM5400 mass flow controllers / meters, which are available with a variety of configurations (fittings, flow ranges, calibrations, interfaces) and are generally built on order. SFC5400 / SFM5400 and SFC5300 / SFM5400 and SFC5300 / SFM5400 and SFC5300 / SFM5400 allow for OEM product development in the context of high-volume projects. Below, a few OEM options are listed. Please do not hesitate to contact Sensirion AG to discuss your requirements.

Example OEM options for hardware (different wetted materials):

- Stainless steel body or other materials
- Sealing materials (e.g. EPDM / FFKM)
- Valve materials: Stainless steel, EPDM / FFKM on request
- Analog voltage or analog current communication interfaces

OEM options for calibration:

- Multigas calibration (allows switching between a set of gas calibrations saved in the device memory)
- New gas calibrations

# 7 Ordering codes

Table 8: Products in SFC5500 and SFM5500 series

| Article        | Description                                                       | Article number |
|----------------|-------------------------------------------------------------------|----------------|
| SFC5500-50sccm | Digital mass flow controller 50 – 0.05 sccm flow range            | 3.000.738      |
| SFC5500-0.5slm | Digital mass flow controller 0.5 - 0.0005 slm flow range          | 3.000.547      |
| SFC5500-2slm   | Digital mass flow controller 2 - 0.002 slm flow range             | 3.000.739      |
| SFC5500-10slm  | Digital mass flow controller 10 - 0.01 slm flow range             | 3.000.548      |
| SFC5500-200slm | Digital mass flow controller 200 - 0.2 slm flow range             | 3.000.549      |
| SFM5500-50sccm | Digital mass flow meter 50 – 0.05 sccm flow range                 | 3.000.740      |
| SFM5500-0.5slm | Digital mass flow meter 0.5 – 0.005 slm flow range                | 3.000.741      |
| SFM5500-2slm   | Digital mass flow meter 2 - 0.002 slm flow range                  | 3.000.742      |
| SFM5500-10slm  | Digital mass flow meter 10 - 0.01 slm flow range                  | 3.000.743      |
| EK-F5x         | Plug'n'play evaluation kit (without mass flow meter / controller) | 1-101006-01    |

# 8 Revision history

| Date        | Version | Page(s) | Changes                                                           |
|-------------|---------|---------|-------------------------------------------------------------------|
| April 2021  | 1       | All     | First version                                                     |
| August 2021 | 2       | 5, 7    | Revised wording in section 1.6, corrected connector to "DB9 male" |
| April 2022  | 3       | all     | Added additional configurations including mass flow meters        |
|             |         |         |                                                                   |
|             |         |         |                                                                   |
|             |         |         |                                                                   |

### CMOSens<sup>®</sup> SFC5500 Mass Flow Controller for Gases Important Notices

#### Warning, Personal Injury

Do not use this product as safety or emergency stop devices or in any other application where failure of the product could result in personal injury. Do not use this product for applications other than its intended and authorized use. Before installing, handling, using or servicing this product, please consult the data sheet and application notes. Failure to comply with these instructions could result in death or serious injury.

If the Buyer shall purchase or use SENSIRION products for any unintended or unauthorized application, Buyer shall defend, indemnify and hold harmless SENSIRION and its officers, employees, subsidiaries, affiliates and distributors against all claims, costs, damages and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if SENSIRION shall be allegedly negligent with respect to the design or the manufacture of the product.

#### **ESD** Precautions

The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation, take customary and statutory ESD precautions when handling this product. See application note "ESD, Latchup and EMC" for more information.

#### Warranty

SENSIRION warrants solely to the original purchaser of this product for a period of 12 months (one year) from the date of delivery that this product shall be of the quality, material and workmanship defined in SENSIRION's published specifications of the product. Within such period, if proven to be defective, SENSIRION shall repair and/or replace this product, in SENSIRION's discretion, free of charge to the Buyer, provided that:

- notice in writing describing the defects shall be given to SENSIRION within fourteen (14) days after their appearance;
- such defects shall be found, to SENSIRION's reasonable satisfaction, to have arisen from SENSIRION's faulty design, material, or workmanship;
- the defective product shall be returned to SENSIRION's factory at the Buyer's expense; and
- the warranty period for any repaired or replaced product shall be limited to the unexpired portion of the original period.

This warranty does not apply to any equipment which has not been installed and used within the specifications recommended by SENSIRION for the intended and proper use of the equipment. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH HEREIN, SENSIRION MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE PRODUCT. ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE EXPRESSLY EXCLUDED AND DECLINED.

SENSIRION is only liable for defects of this product arising under the conditions of operation provided for in the data sheet and proper use of the goods. SENSIRION explicitly disclaims all warranties, express or implied, for any period during which the goods are operated or stored not in accordance with the technical specifications.

SENSIRION does not assume any liability arising out of any application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. All operating parameters, including without limitation recommended parameters, must be validated for each customer's applications by customer's technical experts. Recommended parameters can and do vary in different applications.

SENSIRION reserves the right, without further notice, (i) to change the product specifications and/or the information in this document and (ii) to improve reliability, functions and design of this product.

Copyright © 2022, by SENSIRION. CMOSens® is a trademark of Sensirion. All rights reserved

# Headquarters and Subsidiaries

#### Sensirion AG

Laubisruetistr. 50 CH-8712 Staefa ZH Switzerland

phone: +41 44 306 40 00 fax: +41 44 306 40 30 info@sensirion.com www.sensirion.com

Sensirion Taiwan Co. Ltd phone: +886 3 5506701 info@sensirion.com www.sensirion.com Sensirion Inc., USA phone: +1 312 690 5858 info-us@sensirion.com www.sensirion.com

Sensirion Japan Co. Ltd. phone: +81 3 3444 4940 info-jp@sensirion.com www.sensirion.com/jp Sensirion Korea Co. Ltd. phone: +82 31 337 7700~3 info-kr@sensirion.com www.sensirion.com/kr

Sensirion China Co. Ltd. phone: +86 755 8252 1501 info-cn@sensirion.com www.sensirion.com/cn

To find your local representative, please visit www.sensirion.com/distributors



### FCC and CE statement

The SFC5500 products have been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules (FCC CFR 47). These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions. may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:



- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult a dealer or an experienced radio/TV technician for help.



The CMOSens<sup>®</sup> SFC5500 devices fully comply with norm EN 61000-6-1 to EN 61000-6-4 (Immunity and Emission Test Series).

| Sensirion AG                                                     | ensirion AGSensirion Inc., USAaubisruetistr. 50phone:+1 312 690 5858I-8712 Staefa ZHinfo-us@sensirion.comvitzerlandwww.sensirion.com | Sensirion Korea                               |     | rea | Co.  |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----|-----|------|
| CH-8712 Staefa ZH                                                |                                                                                                                                      | phone:<br>7700~3                              | +82 | 31  | 337  |
| Switzerland<br>phone: +41 44 306 40 00                           |                                                                                                                                      | info-kr@sensirion.com<br>www.sensirion.com/kr |     |     |      |
| fax: +41 44 306 40 30<br>info@sensirion.com<br>www.sensirion.com | Sensirion Japan Co. Ltd.<br>phone:+81 3 3444 4940<br>info-jp@sensirion.com<br>www.sensirion.com/jp                                   | Sensirion<br>Ltd.                             | Ch: | ina | Co.  |
|                                                                  |                                                                                                                                      | phone:<br>1501                                | +86 | 755 | 8252 |
|                                                                  |                                                                                                                                      | www.sensirion.com/cn                          |     |     |      |

Sensirion Taiwan Co. Ltd phone: +886 3 5506701 info@sensirion.com www.sensirion.com

To find your local representative, please visit www.sensirion.com/distributors