

70MSPS 3-Channel AFE with Sensor Timing Generation and LVDS/CMOS Data Output

DESCRIPTION

The WM8232 is a 16-bit analogue front end/digitiser IC which processes and digitises the analogue output signals from CCD sensors or Contact Image Sensors (CIS) at pixel sample rates of up to 35MSPS.

The device has three analogue signal processing channels each of which contains Reset Level Clamping, Correlated Double Sampling (also Sample and Hold), Programmable Gain, Automatic Gain Control (AGC) and Offset adjust functions.

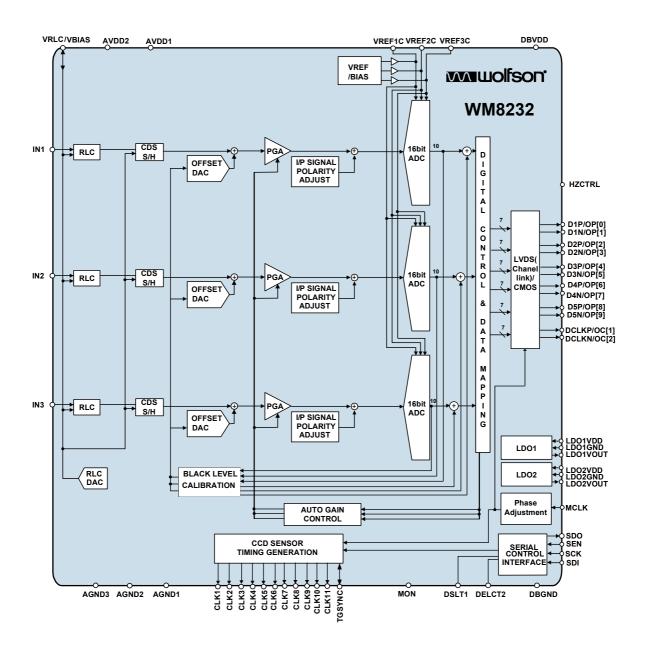
The output from each of these channels is time multiplexed, in pairs, into three high-speed 16-bit Analogue to Digital Converters. The digital data is available in a variety of output formats via the flexible data port.

The WM8232 has a user selectable LVDS or CMOS output architecture.

An internal 4-bit DAC is supplied for internal reference level generation. This may be used during CDS to reference CIS signals or during Clamping to clamp CCD signals. An external reference level may also be supplied. ADC references are generated internally, ensuring optimum performance from the device.

A programmable automatic Black Level Calibration function is available to adjust the DC offset of the output data.

The WM8232 features a sensor timing clock generator for both CCD and CIS sensors. The clock generator can accept a slow or fast reference clock input and also has a flexible timing adjustment function for output timing clocks to allow use of many different sensors.


FEATURES

- 70MSPS conversion rate
- 16 bit ADC resolution
- Current consumption 320mA
- 3.3V single supply operation
- Sample and hold /correlated double sampling
- Programmable offset adjust (8-bit resolution)
- Flexible clamp timing
- Pixel clamp / line clamp mode
- Programmable clamp voltage
- · Programmable CIS/CCD timing generator
- Internally generated voltage references
- Compliant for Spread Spectrum Clock
- LVDS/CMOS output options
 - LVDS 5pair 490MHz 35-bit data
 - CMOS 90MHz output maximum
- Complete on chip clock generator. MCLK 5MHz to 35MHz
- Internal timing adjustment
- Automatic Gain Control
- Automatic Black Level Calibration
- 56-lead QFN package 8mm x 8mm
- Serial control interface

APPLICATIONS

- Digital Copiers
- USB2.0 compatible scanners
- Multi-function peripherals
- High-speed CCD/CIS sensor interface

BLOCK DIAGRAM

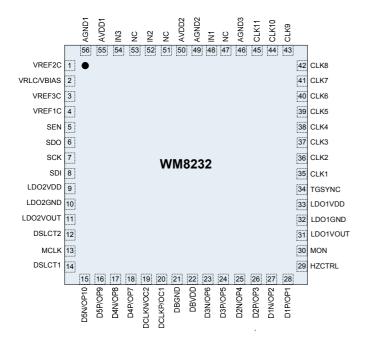


TABLE OF CONTENTS

DE2CKIPTION	
FEATURES	
APPLICATIONS	1
BLOCK DIAGRAM	2
PIN CONFIGURATION	4
ORDERING INFORMATION	4
PIN DESCRIPTION	5
ABSOLUTE MAXIMUM RATINGS	7
RECOMMENDED OPERATING CONDITIONS	7
ELECTRICAL CHARACTERISTICS	8
GENERAL CHARACTERISTICS	
APPLICATIONS INFORMATION	
RECOMMENDED EXTERNAL COMPONENTS	
RECOMMENDED EXTERNAL COMPONENT VALUES	
PACKAGE DIMENSIONS	
IMPORTANT NOTICE	14
ADDRESS:	14

PIN CONFIGURATION

ORDERING INFORMATION

DEVICE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM8232GEFL/V	0 to 85°C	56-lead QFN (8X8x0.85mm) (Pb-free)	MSL3	260°C
WM8232GEFL/RV	0 to 85°C	56-lead QFN (8X8x0.85mm) (Pb-free, tape and reel)	MSL3	260°C

Reel quantity = 2,200

PIN DESCRIPTION

PIN	NAME	Туре	DESCRIPTION
1	VREF2C	Analogue output	Mid reference voltage. This pin must be connected to AGND via a decoupling capacitor.
2	VRLC/VBIAS	Analogue I/O	Reference voltage input/output
3	VREF3C	Analogue output	Lower reference voltage.
_			This pin must be connected to AGND via a decoupling capacitor.
4	VREF1C	Analogue output	Upper reference voltage.
-	CEN	Digital input	This pin must be connected to AGND via a decoupling capacitor.
5	SEN	Digital output	Enables the serial interface when high. Serial interface data output
6 7	SDO SCK	Digital output Digital input	Serial interface data output Serial interface clock
8	SDI	Digital input	Serial interface data input
9		<u> </u>	Analogue supply
	LDO2VDD	Supply	
10	LDO2GND	Supply	Analogue ground
11	LDO2VOUT	Supply	LDO output. This pin must be connected to AGND via a decoupling capacitor.
12	DSLCT2	Analogue input	Device select 2
13	MCLK	Analogue input	Master Clock
14	DSLCT1	Analogue input	Device select 1
15	D5N/OP[9]	LVDS output	LVDS Data output 5 – Negative / CMOS output 11
16	D5P/OP[8]	LVDS output	LVDS Data output 5 – Positive / CMOS output 10
17	D4N/OP[7]	LVDS output	LVDS Data output 4 – Negative / CMOS output 9
18	D4P/OP[6]	LVDS output	LVDS Data output 4 – Positive / CMOS output 8
19	DCLKN/OC[2]	LVDS output	LVDS Clock Output – Negative/ CMOS output 7
20	DCLKP/OC[1]	LVDS output	LVDS Clock Output – Positive/ CMOS output 6
21	DBGND	Supply	Analogue ground
22	DBVDD	Supply	Analogue supply
23	D3N/OP[5]	LVDS output	LVDS Data output 3 – Negative / CMOS output 5
24	D3P/OP[4]	LVDS output	LVDS Data output 3 – Positive / CMOS output 4
25	D2N/OP[3]	LVDS output	LVDS Data output 2 – Negative / CMOS output 3
26	D2P/OP[2]	LVDS output	LVDS Data output 2 – Positive / CMOS output 2
27	D1N/OP[1]	LVDS output	LVDS Data output 1 – Negative / CMOS output 1
28	D1P/OP[0]	LVDS output	LVDS Data output 1 – Positive / CMOS output 0
29	HZCTRL	Digital input	Internal use only. Must be connected to AGND.
30	MON	Analogue output	Clock monitor
31	LDO1VOUT	Supply	LDO output.
			This pin must be connected to AGND via a decoupling capacitor.
32	LDO1GND	Supply	Analogue ground
33	LDO1VDD	Supply	Analogue supply
34	TGSYNC	Digital input	Sensor Timing Sync pulse from host
35	CLK1	Digital output	Sensor Timing Output 1
36	CLK2	Digital output	Sensor Timing Output 2
37	CLK3	Digital output	Sensor Timing Output 3
38	CLK4	Digital output	Sensor Timing Output 4
39	CLK5	Digital output	Sensor Timing Output 5
40	CLK6	Digital output	Sensor Timing Output 6
41	CLK7	Digital output	Sensor Timing Output 7
42	CLK8	Digital output	Sensor Timing Output 8
43	CLK9	Digital output	Sensor Timing Output 9
44	CLK10	Digital output	Sensor Timing Output 10
45	CLK11	Digital output	Sensor Timing Output 11
46	AGND3	Supply	Analogue ground
47	NC	Not connect	Not connected internally

PIN	NAME	Туре	DESCRIPTION
48	IN2	Analogue input	Analogue input 2
49	AGND2	Supply	Analogue ground
50	AVDD2	Supply	Analogue supply
51	NC	Not connect	Not connected internally
52	INP4	Analogue input	Analogue input 4
53	NC	Not connect	Not connected internally
54	INP6	Analogue input	Analogue input 6
55	AVDD1	Supply	Analogue supply
56	AGND1	Supply	Analogue ground

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.

MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

CONDITION	MIN	MAX
Analogue supply voltage: AVDD1-2, LDO1VDD-LDO2VDD, DBVDD	GND - 0.3V	GND + 5V
Analogue grounds: AGND1-3, LDO1GND-LDO2VDD, DBGND	GND - 0.3V	GND + 0.3V
Analogue inputs (IN1-6)	GND - 0.3V	AVDD + 0.3V
Other Analogue pins	GND - 0.3V	AVDD + 0.3V
Digital I/O pins	GND - 0.3V	AVDD + 0.3V
Operating temperature range: T _A	0°C	+85°C
Storage temperature prior to soldering	30°C	c max / 85% RH max
Storage temperature after soldering	-65°C	+150°C

Notes:

- 1. GND denotes the voltage of any ground pin.
- AGND, LDOGND and DBGND pins are intended to be operated at the same potential. Differential voltages between these pins will degrade performance.

RECOMMENDED OPERATING CONDITIONS

CONDITION	SYMBOL	MIN	TYP	MAX	UNITS
Operating temperature range	T _A	0		TBD	°C
Analogue Supply voltage	AVDD1-2 LDO1VDD- LDO2VDD DBVDD	2.97	3.3	3.63	V

ELECTRICAL CHARACTERISTICS

Test Conditions

 $AVDD = LDOVDD = DBVDD = 3.3V \;, AGND = LDOGND = DBGND = 0V, \; T_A = 25^{\circ}C, \; MCLK = 35MHz \; unless \; otherwise \; stated.$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Overall System Specification (inc	luding 10-bit	ADC, PGA, Offset and CDS	functions)			
Conversion rate per channel			5		35	MSPS
Full-scale input voltage range		ADCFS=00, Max Gain		0.12		Vp-p
(see Note 1)		ADCFS=00, Min Gain		2.0		Vp-p
		ADCFS=01, Max Gain		0.15		Vp-p
		ADCFS=01, Min Gain		2.5		Vp-p
		ADCFS=10, Max Gain		0.18		Vp-p
		ADCFS=10, Min Gain		3.0		Vp-p
		ADCFS=11, Max Gain		0.20		Vp-p
		ADCFS=11, Min Gain		3.3		Vp-p
Input signal limits (see Note 2)	V _{IN}	SF_INP=0	AGND-0.3		AVDD+0.3	V
		SF_INP=1	AGND		AGND+1.2	V
Input capacitance	C _{IN}	Inputs to AGND		10		pF
Full-scale transition error		Gain = 0dB; AGAIN[4:0] = 02(hex) DGAIN[11:0] = 6AB(hex)		20		mV
Zero-scale transition error		Gain = 0dB; AGAIN[4:0] = 02(hex) DGAIN[11:0] = 6AB(hex)		20		mV
Differential non-linearity	DNL	10-bit		0.5		LSB
Integral non-linearity (pk-pk/2)	INL	10-bit		1		LSB
Channel to channel gain matching	Min Gain			5		%
	Max Gain			15		%
Output noise		Unity Gain		0.3		LSB rms
·		(Unused channels grounded)				
Channel to channel crosstalk		10-bit		+/-0.5		LSB
Programmable Gain Amplifier	1		u e		11	
Total Resolution (Ga + Gd)	Gт			12		bits
Analogue Gain	Ga		0.6 +	+ 0.3 * AGAIN	I[4:0]	V/V
Max gain, each channel (Ga)	Ga _{MAX}	AGAIN[4:0] = 1F(hex)		9.9		V/V
Min gain, each channel (Ga)	Ga _{MIN}	AGAIN[4:0] = 0(hex)		0.6		V/V
Digital Gain	Gd	[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D	GAIN[11:0] / 2	2 ¹¹	V/V
Max gain, each channel (Gd)	Gd _{MAX}	DGAIN[11:0] = FFF(hex)		2		V/V
Min gain, each channel (Gd)	Gd _{MIN}	DGAIN[11:0] = 400 (hex)		0.5		V/V
Max gain, each channel	GT _{MAX}	AGAIN[4:0] = 1F(hex)		19.8		V/V
(Ga + Gd)	IVII OX	DGAIN[11:0] = FFF(hex)				
Min gain, each channel	GT _{MIN}	AGAIN[4:0] = 0(hex)		0.3		V/V
(Ga + Gd)		DGAIN[11:0] = 400 (hex)				
Analogue to Digital Converter		· · · · · · · · · · · · · · · · · · ·	•	•	•	
Resolution				16		bits
Speed					70	MSPS

Notes:

- Full-scale input voltage denotes the differential input signal amplitude (V_{IN}-VRLC in non-CDS mode, V_{IN}-RESET level in CDS mode) that can be gained to match the ADC full-scale input range.
- 2. **Input signal limits** are the limits within which each input voltage and VRLC reference must lie.

GENERAL CHARACTERISTICS

Test Conditions

 $AVDD = LDOVDD = DBVDD = 3.3V \text{ , AGND} = LDOGND = DBGND = 0V, T_A = 25^{\circ}C, MCLK = 35MHz \text{ unless otherwise stated.}$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
References						
Upper reference voltage	VREF1C	ADCFS=00		2.05		V
		ADCFS=11		2.31		V
Lower reference voltage	VREF3C	ADCFS=00		1.25		V
		ADCFS=11		0.98		V
Input return bias voltage	VREF2C			1.2		V
Diff. Reference voltage (VREF1C-	VREF1C3C	ADCFS=00		0.8		V
VREF3C)		ADCFS=11		1.33		V
Output resistance VREF1C, VREF3C, VREF2C				1		Ω
VRLC/Reset-Level Clamp (RLC)	-					
RLC switching impedance				50		Ω
VRLC short-circuit current				2		mA
VRLC output resistance				2		Ω
VRLC Hi-Z leakage current		VRLC = 0 to AVDD			1	μА
RLCDAC resolution				4		bits
RLCDAC step size	V _{RLCSTEP}	RLC_TOP_SEL=0		0.09		V/step
	V _{RLCSTEP}	RLC_TOP_SEL=1		0.048		V/step
RLCDAC output voltage at	V _{RLCBOT}	RLC_TOP_SEL=0,		0.2		V
code 0(hex)		VRLC_VSEL[4:0]=00000				
	V_{RLCBOT}	RLC_TOP_SEL=1,		0.11		V
		VRLC_VSEL[4:0]=00000				
RLCDAC output voltage at	V_{RLCTOP}	RLC_TOP_SEL=0,		3.0		V
code 1F(hex)		VRLC_VSEL[4:0]=11111				
	V_{RLCTOP}	RLC_TOP_SEL=1,		1.6		V
		VRLC_VSEL[4:0]=11111				
VRLC DNL				+/- 0.5		LSB
VRLC INL				+/- 0.5		LSB
Offset DAC, Monotonicity Guarar	nteed					
Resolution				8		bits
Differential non-linearity	DNL			0.1	0.5	LSB
Integral non-linearity	INL			0.75	1	LSB
Step size				2.04		mV/step
Output voltage		Code 00(hex)		-250		mV
		Code FF(hex)		+250		mV
DIGITAL SPECIFICATIONS						
Digital Inputs	_					
High level input voltage	V _{IH}		0.7 * AVDD			V
Low level input voltage	V _{IL}				0.2 * AVDD	V
High level input current	I _{IH}				1	μА
Low level input current	I _{IL}				1	μA
Input capacitance	Cı			5		pF

Test Conditions

 $AVDD = LDOVDD = DBVDD = 3.3V \;, \\ AGND = LDOGND = DBGND = 0V, \\ T_A = 25^{\circ}C, \\ MCLK = 35MHz \; unless \; otherwise \; stated. \\$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CMOS Outputs	·					
High level output voltage	V _{OH}	I _{OH} = 6mA	AVDD - 0.5			V
Low level output voltage	V _{OL}	I _{OL} = 1mA			0.5	V
High impedance output current	loz				1	μΑ
TG Outputs					•	•
High level output voltage	V _{OHTG}	I _{OH} = 1mA	AVDD - 0.5			V
Low level output voltage	V _{OLTG}	I _{OL} = 1mA			0.5	V
High impedance output current	l _{oztG}				1	μΑ
Digital IO Pins	-					•
Applied high level input voltage	V _{IH}		0.7 * AVDD			V
Applied low level input voltage	V _{IL}				0.2 * AVDD	V
High level output voltage	V _{OH}	I _{OH} = 1mA	AVDD - 0.5			V
Low level output voltage	V _{OL}	I _{OL} = 1mA			0.5	V
Low level input current	I _{IL}				1	μΑ
High level input current	I _{IH}				1	μΑ
Input capacitance	Cı			5		pF
Output Impedance	Ro	lo = 1mA		38		Ω
High impedance output current	l _{OZ}				1	μΑ
LVDS Outputs					•	•
Differential load impedance	RL		90	100	110	Ω
Differential steady-state output voltage magnitude	[VOD]	RL=100Ω	280		450	mV
Change in the steady-state differential output voltage magnitude between opposite binary states	ΔĮVODĮ	RL=100Ω			15	mV
Steady-state common-mode output voltage	VOC(SS)	RL=100Ω		1.25		V
Peak-to-peak common-mode output	VOC(PP)			20	50	mV
Short-circuit output current	IOS		-6		6	mA
High-impedance state output current	IOZ		-10		10	uA
Supply Currents						
Total supply current – active		FOL_EN=1		320		mA
Total supply current – full power down mode				300	400	μА

Notes:

- Full-scale input voltage denotes the differential input signal amplitude (V_{IN}-VRLC in non-CDS mode, V_{IN}-RESET level in CDS mode) that can be gained to match the ADC full-scale input range.
- 2. **Input signal limits** are the limits within which each input voltage and VRLC reference must lie.

APPLICATIONS INFORMATION

RECOMMENDED EXTERNAL COMPONENTS

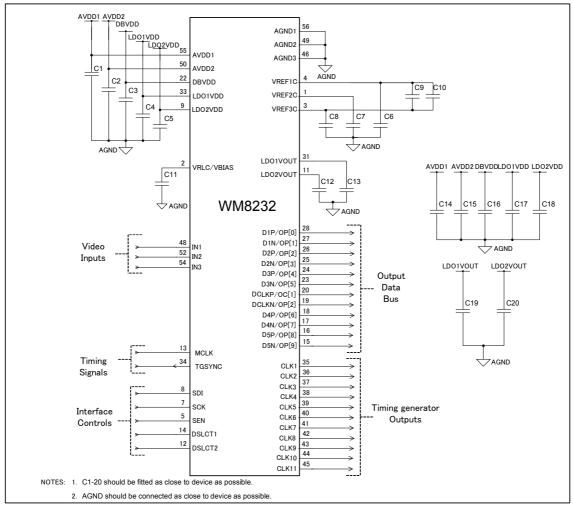
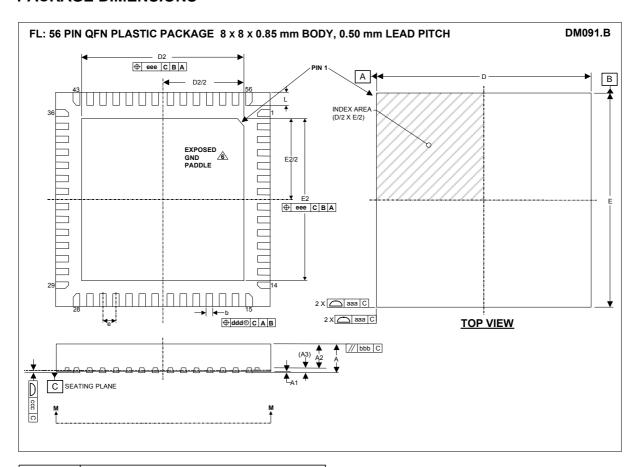


Figure 1 External Components Diagram


RECOMMENDED EXTERNAL COMPONENT VALUES

COMPONENT REFERENCE	SUGGESTED VALUE	DESCRIPTION
C1	0.1uF	De-coupling for AVDD1
C2	0.1uF	De-coupling for AVDD2
C3	0.1uF	De-coupling for DBVDD
C4	0.1uF	De-coupling for LDO1VDD
C5	0.1uF	De-coupling for LDO2VDD
C6	0.1uF	De-coupling for VREF1C
C7	0.1uF	De-coupling for VREF2C
C8	0.1uF	De-coupling for VREF3C
C9	0.1uF	High frequency decoupling between VREF1C and VREF3C
C10	10uF	Low frequency decoupling between VREF1C and VREF3C
C11	1uF	De-coupling for VRLC/VBIAS
C12	1uF	De-coupling for LDO1VOUT
C13	1uF	De-coupling for LDO2VOUT
C14	10uF	Reservoir capacitor for AVDD1
C15	10uF	Reservoir capacitor for AVDD2
C16	10uF	Reservoir capacitor for DBVDD
C17	10uF	Reservoir capacitor for LDO1VDD
C18	10uF	Reservoir capacitor for LDO2VDD
C19	10uF	Reservoir capacitor for LDOOUT
C20	10uF	Reservoir capacitor for LDOOUT

Table 1 External Components Description

PACKAGE DIMENSIONS

Symbols	Dimensions (mm)					
	MIN	NOM	MAX	NOTE		
Α	0.8	0.85	0.9			
A1	0	0.035	0.05			
A2	-	0.65	0.67			
A3		0.203 REF				
b	0.20	0.25	0.30	1		
D		8.00 BSC				
D2	5.95	6.05	6.15			
Е		8.00 BSC				
E2	5.95	6.05	6.15			
е		0.5 BSC				
L	0.35	0.4	0.45			
	Tolerance	s of Form an	d Position			
aaa		0.10				
bbb	0.10					
ccc	0.08					
ddd	0.10					
eee	0.10					
REF	JEDE(C, MO-220, V	ARIATION V	/LLD-2		

- NU 1ES:

 1. DIMENSION B APPLIED TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 mm AND 0.30 mm FROM TERMINAL TIP.

 2. ALL DIMENSIONS ARE IN MILLIMETRES

 3. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-002.

 4. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

 5. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.

 6. REFER TO APPLICATIONS NOTE WAN_0118 FOR FURTHER INFORMATION.

IMPORTANT NOTICE

Wolfson Microelectronics plc ("Wolfson") products and services are sold subject to Wolfson's terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.

Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimise risks associated with customer applications, the customer must use adequate design and operating safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.

Wolfson's products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Wolfson's approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document belong to the respective third party owner.

Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is not liable for any unauthorised alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Wolfson's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

ADDRESS:

Wolfson Microelectronics plc Westfield House 26 Westfield Road Edinburgh EH11 2QB

Tel :: +44 (0)131 272 7000 Fax :: +44 (0)131 272 7001

Email :: sales@wolfsonmicro.com

