

AXICOM
Telecom-, Signal and RF Relays

P1 V23026 Relay

Disclaimer

While Tyco Electronics has made every reasonable effort to ensure the accuracy of the information in this datasheet, Tyco Electronics does not guarantee that it is error-free, nor does Tyco Electronics make any other representation, warranty or guarantee that the information is accurate, correct, reliable or current. Tyco Electronics reserves the right to make any adjustments to the information contained herein at any time without notice. Tyco Electronics expressly disclaims all implied warranties (and all express warranties, except as otherwise stated in this datasheet) regarding the information contained herein, including but not limited to any implied warranties or merchantability or fitness for a particular purpose. It is recommended that you test any new or replacement product before incorporating into a system.

The dimensions in this datasheet are for reference purpose only and are subject to change without notice. Specifications are subject to change without notice.

Index

Dimensions 4
Coil Operating Range 5
Coil Data and Ordering Information 6
Contact Data 7
Insulation 8
General Data 8
Packing 10

P1 V23026 Relay

1 pole telecom / signal relay, polarized,
Through Hole Type (THT) or
Surface Mount Technology (SMT),

Relay types: non-latching with 1 coil
latching with 2 coils
latching with 1 coil

ROHS compliant (Directive 2002/95/EC) as per product date code 0429.

Features

- Directly triggerable with TTL standard modules such as ALS, HCT and ACT
- Slim line $13.5 \times 7.85 \mathrm{~mm}, 0.531 \times 0.309$ inch
- Switching current 1 A
- 1 changeover contact (1 form C / SPDT)
- Bifurcated contacts
- Immersion cleanable
- High sensitivity results in low nominal power consumption

65 to 130 mW for non-latching 30 to 150 mW for latching

- Surge voltage resistance between contact and coil:
- $\quad 2.5 \mathrm{kV}(2 / 10 \mu \mathrm{~s})$ meets the Bellcore

Requirement GR-1089

- $\quad 1.5 \mathrm{kV}(10 / 160 \mu \mathrm{~s})$ meets FCC Part 68

Typical applications

- Automotive equipment

CAN bus, imobilizer

- Office equipment
- Measurement and control equipment
- Medical equipment
- Safety equipment

Options

- FCC version on request. Testing of open contacts with surge voltage in accordance with FCC 68.302 ($1.5 \mathrm{kV}, 10 / 160 \mu \mathrm{~s}$)

Insulation category

Basic insulation coil/contacts according to IEC/EN 60950

Clearance	$>0.75 \mathrm{~mm}$
Creepage distance	$>0.75 \mathrm{~mm}$

P1 V23026 Relay

V23026-x1xxx-B201			
THT			
L	13.00 ± 0.10	0.512 ± 0.004	
W	7.60 ± 0.10	0.299 ± 0.004	
H	$6.90-0.20$	$0.272-0.008$	
T	$3.50-0.20$	$0.138-0.008$	
T1	N/A	N/A	
T2	5.08 ± 0.15	0.200 ± 0.006	
S	0.30 ± 0.10	0.012 ± 0.004	
S1	N/A	N/A	
S2	N/A	N/A	

V23026-x1xxx-B201	
mm	inch
13.40 ± 0.10	0.528 ± 0.004
7.75 ± 0.10	0.305 ± 0.004
$8.00-0.20$	$0.315-0.008$
$\mathrm{~N} / \mathrm{A}$	N / A
$10.90-0.50$	$0.429-0.020$
5.08 ± 0.15	0.200 ± 0.006
$\mathrm{~N} / \mathrm{A}$	N / A
0.85 ± 0.10	0.033 ± 0.004
$0.20-0.15$	$0.008-0.006$

THT Version

Mounting hole layout

View onto the component side of the PCB (top view)

SMT Version

Solder pad layout

View onto the component side of the PCB (top view)

Terminal assignment

Relay - top view
Contact release or reset condition, coil polarity to set the relay

Non-latching type	Latching type, 1 coil	Latching type, 2 coils
not energized condition	reset condition	reset condition

Contacts are shown in reset condition. Both coils can be used either as set or reset coil.

P1 V23026 Relay

Coil Operating Range

$U_{\text {nom }}=$	Nominal coil voltage
$U_{\text {max. }}=$	Upper limit of the operative range of the coil voltage (limiting voltage) when coils are continously energized
$\mathrm{U}_{\text {op. min. }}=$	Lower limit of the operative range of the coil voltage (reliable operate voltage)
$\mathrm{U}_{\text {rel. min. }}=$Lower limit of the operative range of the coil voltage (reliable release voltage $)$	

Our commitment. Your advantage.

P1 V23026 Relay

Coil Data (values at $23^{\circ} \mathrm{C}$)

Ordering Information

Nominal voltage $U_{\text {nom }}$	Operate/set voltage range Vinimum		Release/ reset voltage Minimum	Coil power	Coil Resistance voltage $U_{\text {min }}$ voltage $U_{\max }$	Relay code	Tyco part number
Vdc	Vdc	Vdc	mW	$\Omega / \pm 10 \%$			

THT, non-latching, 1 coil

3	2.25	8.80	0.30	66	137	V23026A1006B201	$1-1393774-7$
5	3.75	14.50	0.50	68	370	V23026A1001B201	$1393774-1$
9	6.75	25.50	0.90	70	1165	V23026A1005B201	$1-1393774-5$
12	9.00	35.00	1.20	64	2250	V23026A1002B201	$1393774-8$
24	18.00	50.00	2.40	128	4500	V23026A1004B201	$1-1393774-2$

THT, latching, 2 coils (coils I and II are identical)

3	2.25	8.55	2.25	69	130	V23026B1106B201	1393775-3
5	3.75	14.75	3.75	64	390	V23026B1101B201	3-1393774-4
9	6.75	26.00	6.75	68	1200	V23026B1105B201	1393775-2
12	9.00	29.00	9.00	96	1500	V23026B1102B201	3-1393774-5
24	A nominal voltage of 24 V is feasible with a 12 V coil with a series resistor (1500 Ω)						

THT, latching, 1 coil

3	2.25	13.00	-2.25	30	300	V23026C1056B201	$2-1393774-6$
5	3.75	20.00	-3.75	34	740	V23026C1051B201	$2-1393774-0$
9	6.75	35.00	-6.75	38	2160	V23026C1057B201	$2-1393774-7$
12	9.00	50.00	-9.00	32	4500	V23026C1052B201	$2-1393774-1$
24	18.00	50.00	-18.00	128	4500	V23026C1054B201	$2-1393774-4$

SMT, non-latching, 1 coil

3	2.25	8.00	0.30	80	113	V23026D1026B201	$1393776-8$
5	3.75	13.30	0.50	80	313	V23026D1021B201	$1393776-3$
9	6.75	24.00	0.90	80	1015	V23026D1025B201	$1422015-9$
12	9.00	35.00	1.20	80	1800	V23026D1022B201	$1393776-4$
24	18.00	50.00	2.40	128	4500	V23026D1024B201	$1393776-7$

SMT, latching, 2 coils (coils I and II are identical)

3	2.25	8.55	2.25	69	130	V23026E1106B201	$1393777-3$
5	3.75	14.75	3.75	64	390	V23026E1101B201	$1422015-6$
9	6.75	26.00	6.75	68	1200	V23026E1105B201	$1393777-2$
12	9.00	29.00	9.00	96	1500	V23026E1102B201	$1393776-9$
24	A nominal voltage of 24 V is feasible with a 12 V coil with a series resistor (1500Ω)						

SMT, latching, 1 coil

9	3.75	20.00	-3.75	34	740	V23026F1051B201	$1422015-8$
12	9.00	50.00	-9.00	32	4500	V23026F1052B201	$4-1393774-3$
24	A nominal voltage of 24 V is feasible with a 12 V coil with a series resistor (4500 Ω)						

Further coil versions e.g. $1.5 \mathrm{~V}, 9 \mathrm{~V}$ and 15 V are available on request.

P1 V23026 Relay

Contact Data

Number of contacts and type	1 changeover contact
Contact assembly	Bifurcated contact
Contact material	Palladium nickel, gold-rhodium covered
Limiting continuous current at max. ambient temperature	1 A
Maximum switching current	1 A
Maximum swichting voltage	125 Vdc
	150 Vac
Maximum switching capacity	$30 \mathrm{~W}, 60 \mathrm{VA}$
Thermoelectric potential	$<100 \mu \mathrm{~V}$
Initial contact resistance / measuring condition: $10 \mathrm{~mA} / 20 \mathrm{mV}$	$<50 \mathrm{~m} \Omega$
Electrical enduranceat $12 \mathrm{~V} / 10 \mathrm{~mA}$ at $6 \mathrm{~V} / 100 \mathrm{~mA}$ at $30 \mathrm{~V} / 1000 \mathrm{~mA}$	typ. 5×107 operations typ. typ. 1×107 operations
Mechanical endurance	
UL contact ratings	typ. 10^{9} operations

Max. DC Load Breaking Capacity

Our commitment. Your advantage.

P1 V23026 Relay

Insulation

Insulation resistance at 500 Vdc	$>109 \Omega$
Dielectric test voltage (1 min) between coil and contacts (Relay with 1 coil) between open contacts	1500 Vrms
Surge voltage resistance according to BellcoreTR-NWT-001089 (2 / 10 $\mu \mathrm{s})$ between coil and contacts (Relay with 1 coil) between open contacts according to FCC $68(10 / 160 ~ \mu s)$ between coil and contacts (Relay with 1 coil) between open contacts	500 Vrms
Insulation according to IEC / EN 60950 Clearance Creepage distance	on request 2000 V

High Frequency Data

Capacitance between coil and contacts between open contacts	$\begin{aligned} & \max .6 \mathrm{pF} \\ & \max .5 \mathrm{pF} \end{aligned}$
RF Characteristics Isolation at $100 / 900 \mathrm{MHz}$ Insertion loss at $100 / 900 \mathrm{MHz}$ V.S.W.R. at $100 / 900 \mathrm{MHz}$	$\begin{gathered} -30.0 \mathrm{~dB} /-18.0 \mathrm{~dB} \\ -0.12 \mathrm{~dB} /-1.9 \mathrm{~dB} \\ 1.06 / 1.75 \end{gathered}$

General Data

Operate time at $U_{\text {nom }}$ typ. / max.	$1 \mathrm{~ms} / 2 \mathrm{~ms}$
Reset time (latching) at $U_{\text {nom }}$, typ. / max.	$1 \mathrm{~ms} / 2 \mathrm{~ms}$
Release time without diode in parallel (non-latching), typ. / max.	0.4 ms / 1 ms
Release time with diode in parallel (non-latching), typ. / max.	$1.2 \mathrm{~ms} / 2 \mathrm{~ms}$
Bounce time at closing contact, typ. / max.	$1 \mathrm{~ms} / 3 \mathrm{~ms}$
Maximum switching rate without load	200 operations/s
Ambient temperature	$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ on request
Thermal resistance	< 130 K/W
Maximum permissible coil temperature	$85^{\circ} \mathrm{C}$
Vibration resistance (function)	$\begin{gathered} 20 \mathrm{G}, 200 \text { to } 2000 \mathrm{~Hz} \\ 40 \mathrm{G}, 10 \text { to } 200 \mathrm{~Hz} \end{gathered}$
Shock resistance, half sinus, 11 ms	50 G (function)
Degree of protection / Environmental protection	immersion cleanable, IP 67 / RT III
Needle flame test	application time 20 s , no burning < 15s
Mounting position	any
Processing information	Ultrasonic cleaning possible
Weight (mass)	max. 2 g
Terminal surface	SnCu 0.7
Moisture sensitive level (JEDEC J-STD-020B) - SMD types	MSL 3
Resistance to soldering heat	$265{ }^{\circ} \mathrm{C} / 10 \mathrm{~s}$

All data refers to $23^{\circ} \mathrm{C}$ unless otherwise specified.

P1 V23026 Relay

Recommended Soldering Conditions

Soldering conditions according IEC 60058-2-58 and IPC/JEDEC J-STD-020B

Vapor Phase Soldering: Temperature/Time Profile (Lead and Housing Peak Temperature)

Resistance to soldering heat - Reflow profile

Infrared Soldering: Temperature/Time Profile (Lead and Housing Peak Temperature)

Recommended reflow soldering profile

Infrared Soldering: Temperature/Time Profile (Lead and Housing Peak Temperature)

P1 V23026 Relay

Packing

Tube for THT version 40 relays per tube 2‘000 relays per box

Tape and reel for SMT version 480 relays per reel 2‘400 per box

Reel dimension

Abstract

IM Relays 4th generation slim line - low profile polarized 2 c/o telecom signal relay with bifurcated contacts, available as non latching or latching relay with 1 coil. Nominal voltage range from 1.5 ... 24 V , coil power consumption of 50 .. 200 mW , latching relays with 1 coil 100 mW . The IM relay is available as through hole and surface mount type (J-Legs and Gull Wings) and capable to switch loads up to $60 \mathrm{~W} / 62,5 \mathrm{VA}$. It is currently the only 2 A rated 4 G relay on the market. Dielectric strength fulfills the Telcordia requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The IM relay is tested according CECC/IECQ and certified in accordance with IEC/EN 60950 and UL 60950. Dimensions approx. $10 \times 6 \mathrm{~mm}$ board space and 5.65 mm height.

P2 Relays

3rd generation polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 140 mW , latching relays with 1 coil 70 mW . The P2 Relay is available as through hole or surface mount type and capable to switch currents up to 5 A . Dielectric strength fulfills the Telcordia requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The P2 relay is tested according CECC/IECQ and certified in accordance with IEC/EN 60950 and UL 60950. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and 10 mm height.

FX2 Relays

3rd generation polarized 2 c/o telecom relay with bifurcated contacts available as non latching or latching relay with 1 coil. Nominal voltage range from $3 \ldots 48 \mathrm{~V}$, coil power consumption of $80 \ldots 260 \mathrm{~mW}$ for the high sensitive version, 140... 300 mW for the standard version, latching relays with 1 coil 100 mW . The FX2 relay is available as through hole type and capable to switch loads up to $60 \mathrm{~W} / 62,5 \mathrm{VA}$. Dielectric strength fulfills the Telcordia requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The FX2 relay is tested according CECC/ IECQ and certified in accordance with IEC/EN 60950 and UL 60950.
Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and $10,7 \mathrm{~mm}$ height.

FT2 / FU2 Relays

3rd generation non polarized, non latching 2 c/o telecom relay with bifurcated contacts. Nominal voltage range from $3 \ldots 48 \mathrm{~V}$, coil power consumption $200 \ldots 300 \mathrm{~mW}$. Most sensitive 48 V relay. Available as through hole and surface mount type. Dielectric strength fulfills the Telcordia requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 /$ $160 \mu \mathrm{~s}$). The FT2/FU2 relay is tested according CECC/IECQ and certified in accordance with IEC/EN 60950 and UL 60950.
Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and 10 mm height.

FP2 Relays

3rd generation polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from $3 \ldots 48 \mathrm{~V}$, coil power consumption of $80 \ldots 260 \mathrm{~mW}$ for the high sensitive version, $140 . .300 \mathrm{~mW}$ for the standard version, latching relays with 1 coil 100 mW .. The FP2 Relay is available as through hole type and capable to switch loads up to $60 \mathrm{~W} / 62,5 \mathrm{VA}$. Dielectric strength fulfills FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The FP2 is tested according CECC/IECQ approved.
Dimensions approx. $14 \times 9 \mathrm{~mm}$ board space and 5 mm height.

MT2

2nd generation non polarized, non latching 2 c/o telecom and signal relay with bifurcated contacts. Nominal voltage range from 3 ... 48 V , coil power consumption $150 / 200 / 300 / 400$ and 550 mW Dielectric strength fulfills the requirements according FCC part 68 ($1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s}$).
Dimensions approx. $20 \times 10 \mathrm{~mm}$ board space and 11 mm height.

D2n Relays

2nd generation non polarized 2 c/o relay for telecom and various other applications. Nominal voltage range from 3 ... 48 V , coil power consumption from 150 500 mW . The D2n relay is capable to switch currents up to 3A. Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $20 \times 10 \mathrm{~mm}$ board space and 11 mm height.

P1 Relays

Extremely sensitive, polarized 1 c/o relay with bifurcated contacts for a wide range of applications, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 65 mW , latching relays with 1 coil 30 mW . The P1 relay is available as through hole or surface mount type and capable to switch currents up to 1 A. Dielectric strength fulfills the requirements according FCC part 68 (1,5 $\mathrm{kV}-10 / 160 \mu \mathrm{~s}$). Dimensions approx. $13 \times 7,6 \mathrm{~mm}$ board space and 7 mm height for THT or 8 mm height for SMT version.

W11 Relays

Low cost, non polarized 1 c/o relay for various applications. Nominal voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 450 mW , sensitive versions 200 mW . The W11 relay is capable to switch currents up to 3 A . Dielectric strength 1000 Vrms.
Dimensions approx. $15,6 \times 10,6 \mathrm{~mm}$ board space and $11,5 \mathrm{~mm}$ height.

Reed Relays

High sensitive, non polarized relay for telecom and various other applications, available with $1 \mathrm{n} / \mathrm{o}, 2 \mathrm{n} / \mathrm{o}$ or 1c/o contacts. Nominal voltage range from $5 \ldots 24 \mathrm{~V}$, coil power consumption $50 \ldots 280 \mathrm{~mW}$ for $1 \mathrm{n} / \mathrm{o}$ and $125 \ldots$ 280 mW for $2 \mathrm{n} / \mathrm{o}$ or $1 \mathrm{c} / \mathrm{o}$ versions. Reedrelays are available in DIP or SIL housing and capable to switch currents up to 0,5 A. Integrated diode and/or electrostatic shield optional. Dielectric strength 1500 Vdc. Dimensions approx. $19,3 \times 7 \mathrm{~mm}$ board space and $5 \ldots 7,5 \mathrm{~mm}$ height for DIP or $19,8 \times 5 \mathrm{~mm}$ board space and $7,8 \mathrm{~mm}$ height for SIL version.

Cradle Relays

Extremely reliable and mature relay family of 1st generation for various signal switching applications. Available as non polarized, polarized / latching and relay with AC coil. The benefit is the possibility of combining various contact sets from 1 up to 6 poles, single and bifurcated contacts, different contact materials with a coil voltage range from $1,5 \mathrm{Vdc}$ to 220 Vac . Cradle relays are available as dust protected and hermetically sealed versions, with plug in or solder terminals and are capable to switch currents up to 5 A . Forcibly guided (linked) contact sets optional. Dielectric strength 500 Vrms. Dimensions from approx. 19×24 to $19 \times 35 \mathrm{~mm}$ board space and 30 mm height.

Other Relays

We offer a variety of different relay families for maintenance and replacement purposes. These relays are up to 60 years old now, such as Card Relay SN (V23030 series), Small General Purpose Relay (V23006 series), Small Polarized Relay (V23063 ... V23067 and V23163 ... V23167 series) Accessories like sockets, hold down springs, etc. optional.

High Frequency Relays

HF3 / HF3S / HF6 series RF relays offering excellent RF characteristics in a small package. All HF series relays are suitable for SMD soldering processes. Available as non latching or latching versions with 1 or 2 coils and a nominal coil voltage range from $3 \ldots 24 \mathrm{~V}$, a coil power consumption of 140 mW or 70 mW (single coil latching types).

HF3: Low cost RF relay suitable up to 3 GHz . Impedance 50 and 75 Ohm. 50 W hot switching and 50 W RF power carry capability. Dimensions $14.6 \times 7.3 \times 10.3 \mathrm{~mm}$.

HF3S: High performance, high power RF relay suitable up to 3 GHz , 50 W hot switching and 150 W RF power carry capability. Dimensions $15 \times 7.6 \times 10.6 \mathrm{~mm}$.

HF6: High performance, high power RF relay suitable up to 6 GHz , 50 W hot switching and 50 W RF power carry capability.
Dimensions $15 \times 7.6 \times 10.6 \mathrm{~mm}$.

Tyco Electronics Logistics AG
Werk Axicom Au
Seestrasse 295
CH-8804 Au-Wädenswil / Switzerland
Phone +41 447829111
Fax \quad +41447829000
E-mail: axicom@tycoelectronics.com

Tyco Electronics
Paulsternstrasse 26
D-13629 Berlin / Germany
Phone +49 3038638573
Fax +493038638575
E-mail: axicom@tycoelectronics.com

Tyco Electronics EC Trutnov s.r.o.
Komenského 821
CZ-541 01 Trutnov / Czech Republic
E-mail: axicom@tycoelectronics.com

AXICOM

Telecom-, Signal and RF Relays

Tyco Electronics Corporation

Phone +1 800-522-6752

Tyco Electronics

