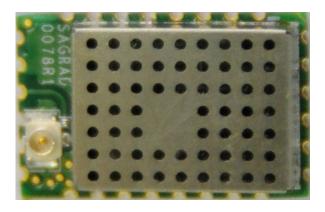


SG901-1098 Miniature Wi-Fi Radio

Overview


The SG901-1098 WiFi module is a shielded and FCC module certified version of the SG901-1091 Radio Module. It is optimized to simplify successful integration into systems requiring the latest performance with small size. This certified module is a highly integrated single chip based 802.11b/g/n WLAN radio for embedded, low-power and extremely small form factor mobile applications. The product conforms to the IEEE 802.11b, g, and n protocols operating in the 2.45GHz ISM frequency band supporting 802.11g/n modulations from 6 to 65Mbps, and 802.11b modulations.

The SG901-1098 is a fully integrated wireless radio including RF Synthesizer/VCO, high-speed data converters, digital baseband processor, onboard MAC and PHY processors, Power Management, and Power Amplifier.

On-chip auto-calibration eliminates unit specific and customer calibration.

An on-board crystal and filter simplify system integration. The addition of 2.3 to 4.8V and 1.8V supplies, Antenna, and host communication provides a complete WiFi solution.

Host control is provided by either an SDIO or SPI interface at 1.8V.

Features

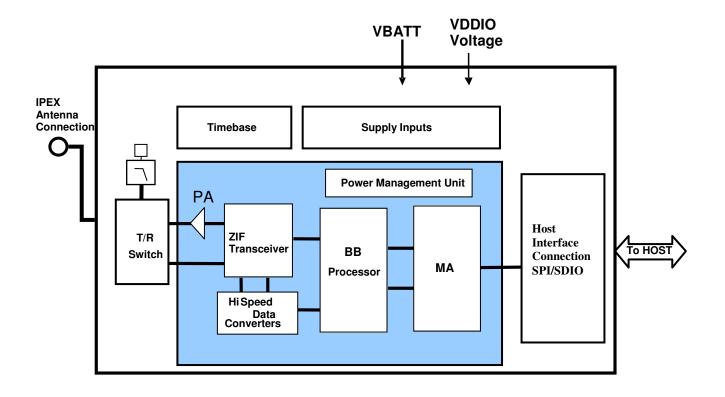
- FCC Module Certification (planned)
- Ultra Low Current Consumption
- Small Footprint (13.5x21.25mm)
- Self Calibrated
- RoHs Compliant
- Fully Integrated 802.11 System Solution
- Fully Compliant with the IEEE 802.11B,G, and N WLAN Standards
- Support for 802.11g/n Modulations up to 65Mbps, and Mandatory 802.11b Modulations
- Intelligent Power Control, Including 802.11 Power Save Mode
- Supports SPI Interface and SDIO Interface
- Factory Support for Linux 2.6/Android, Windows CE, Symbian
- Source Code Available for porting to RTOS or Custom OS
- Hardware driver is available under License from Sagrad
- Available under either:
 - o Industrial Temperature -40 to +85C
 - o Commercial Temperature 0 to +70C
- Contact Factory for FCC compliant applications

Applications

- Hand-held Devices
- Embedded Systems
- Portable Systems
- Point of Sale terminals
- Personal Digital Assistants (PDA)
- Cameras
- Cable Replacement

Ordering Information

Packaging	Temp Range	Part Number
Tape and Reel	Industrial	SG901-1098-ET-TR
Bulk	Industrial	SG901-1098-ET-BLK
Tape and Reel	Commercial	SG901-1098-CT-TR
Bulk	Commercial	SG901-1098-CT-BLK


Evaluation Kit Available

This EVK supports embedded software development.

EVK for 1098	SG923-0010
--------------	------------

Block Diagram

Standards Performance

Target Regulatory Domains	
US – FCC	In Progress
Canada – IC	planned
EU – ETSI	In Progress
Japan – TELEC	Optional
Standards Support	
Modulations	b/g/n Modulations
Power Save	802.11e/WMM/WMM-PS
Encryption	802.11i/WEP/WPA/WPA2
Resources	802.11k
Regulatory Support	802.11d
Fast BSS Transition	802.11r
Protected Frames	802.11w
Direct Connect	Wi-Fi Direct

General Electrical Specifications

Parameter		Test Condition / Comment	Min.	Тур.	Max.	Units
Absolute Maximum	Ratings					
3.3V Supply			2.3	3.3	4.8	V
VHIO Supply			1.65	1.8	1.95	V
Operating Condition	s and Input Power Specific	cations				
Operating Temperat	ure Range		-40		85	℃
	Input Supply Voltage		2.3	3.3	4.8	V
	Sleep Mode Current			80		uA
3.3V Supply	Power Save Mode Current	DTIM = 1		0.87		mA
	Peak TX Current	14.5dBm		294		mA
Peak RX Current		Processing OFDM		75		mA
	Input Supply Voltage	VHIO input supply determines Host CMOS logic levels	1.65	1.8	1.95	V
VHIO Supply	Input Supply Current	RX Active, processing OFDM		0.87		mA
	Sleep Mode Current			25		uA
Input Voltage	VIL		-0.3		0.35VHIO	V
Levels VIH			0.625VHIO			V
Output Voltage	VOL	IOL = 100uA			0.2	V
Levels	VOH	IOH = -100uA	VHIO-0.2		VHIO	V

RF Characteristics

Parameter		Test Condition / Comment	Min.	Тур.	Max.	Units
Antenna Port Impedance				50		Ohms
Antenna Input Return Loss		CH1 to CH14		-11		dB
	11b, 1Mbps			-96		dBm
	11b, 2 Mbps			-93		dBm
	11b, 5.5 Mbps			-91		dBm
	11b, 11 Mbps			-87		dBm
	11g, 9Mbps			-89.5		dBm
DV Committee in	11g, 18Mbps			-86		dBm
RX Sensitivity	11g, 36Mbps			-80		dBm
	11g, 54Mbps			-74.5		dBm
	11n, MCS1, 13Mbps			-86.5		dBm
	11n, MCS3, 26Mbps			-81.5		dBm
	11n, MCS5, 52Mbps			-74		dBm
	11n, MCS7, 65Mbps			-71		dBm
Channel to Channel De-sensitivity	CH1 to 14	11g, 54Mbps 10% PER		1		dB
Maximum Input Signal	CH7	11g, 54Mbps		-20		dBm

RF Characteristics cont,

Parameter		Test Condition / Comment	Min.	Тур.	Max.	Units
	11Mbps			38		dBc
	9Mbps			20		dBc
Adjacent Channel Rejection	54Mbps			4		dBc
	MCS1			24		dBc
	MCS7			3		dBc
					•	
TX Output Power	11b, 1Mbps	@000 11h anastral mask		18.3		dBm
	11b, 11Mbps	@802.11b spectral mask		18.3		dBm
	11g, 9Mbps	@802.11g spectral mask		18.3		dBm
	11g, 54Mbps	EVM = -27dB, 4.5%		13.7		dBm
	802.11n MCS1	@802.11n spectral mask		18.3		dBm
	802.11n MCS7	EVM = -27dB		13.5		dBm

Pinout List

SIGNAL NAME	PIN NUMBER	DESCRIPTION		NOTES	
RF Pins					
2G4_RF	U.FL Connector			Hirose Electrical PN U.FL-R-SMT(10)	
2G4_RF	11	Optional PAD, Factory 6	enabled only	Careful Layout for this RF Pad and nearby ground	
	Serial Interface	Pins (VHIO Domain, logic	c levels compatible with	the VHIO (Pin 26) input voltage)	
SDCMD	21	SPI MOSI (input)	SDIO CMD	VHIO Domain	
SDCLK	22	SPI Clock Input	SDIO CLK	VHIO Domain	
SDD0	20	SPI MISO (output)	SDIO Data 0	VHIO Domain	
SDD1	19	SPI: Interrupt Output	SDIO Data 1	VHIO Domain	
SDD2	18		SDIO Data 2	VHIO Domain	
SDD3	17	SPI Chip Select Input	SDIO Data 3	VHIO Domain	
			Control Pins		
POWERUP	4	Power Up Enable (from Host)		VLDO Domain with internal pull up High = operating, Low = off	
RSTn	25	Reset Input		VHIO Domain – Active Low reset	
CLK32K	27	32.768 kHz Sleep Clock Input		VHIO Domain	
Power and Ground Pins					
VHIO	26	Supply Voltage for I/O's		1.65 to 1.95V, Internally decoupled with a 0.1uF capacitor	
3.3V	8	RF PA supply		2.7 to 3.6V, Internally decoupled with a 10uF capacitor	
GND	1,2,3,5,6,7,10, 12,13,14,15,16, 23,24,28,Paddle	Ground Connections			

Software Support

The 1098 module is supported through highly portable software. The hardware drivers and Wi-Fi stack as provided is compatible with Linux kernel 2.6. The source code for the hardware abstraction will be available under a GPL license soon and will be available from Sagrad. The licensed Wi-Fi licensed stack available from Sagrad is provided in binary form without a license. Source code for the Wi-Fi stack is available to the customer. To obtain source code for the stack contact Sagrad sales at www.sagrad.com. Software and source code are available free of charge but require a software license agreement for the Wi-Fi stack source.

In almost all cases the soon to be released GPL driver will need to be modified for the customer's specific hardware. The Wi-Fi stack will only need to be modified for compatibility to the customers OS and compiler. In many cases such as Linux near zero modification of the Wi-Fi stack will be required.

The Wi-Fi module/stack currently is only tested in client mode and is compatible with any access point that meets 802.11 standards. An access point mode code base is planned in the future.

The complete 802.11 stack requires about 350KB of space for the implementation of the entire specification. Extremely small versions can be created by knowledgeable customers but is a considerable task and requires detailed understanding of 802.11.

As a service to customers, Sagrad offers extended technical support on a fee basis.

Software Details:

MAC

- Comprehensive MAC functionality according to IEEE 802.11-2007, including QoS traffic scheduling
- Supports the following optional IEEE 802.11n features:

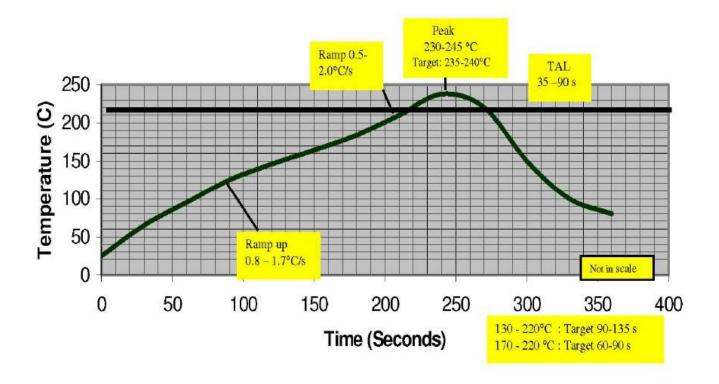
MPDU aggregation
MSDU aggregation
Immediate Block Acknowledgement
PSMP
MTBA
RIFS
L-SIG TXOP protection

Link adaptation using MCS feedback

Encryption

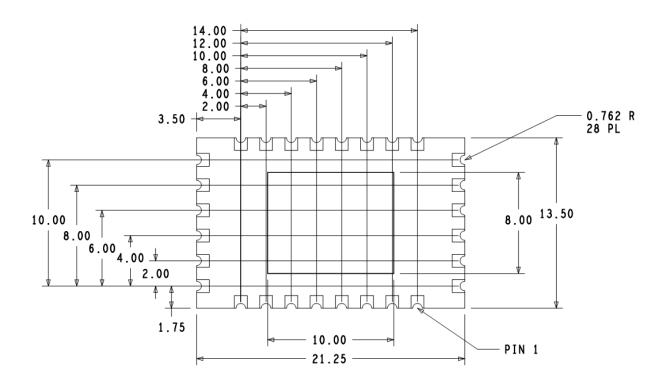
■ Hardware encryption according to IEEE 802.11-2007 and IEEE 802.11w/D10.0:

WEP40/64 WEP104/128 CCMP (AES) TKIP BIP


OS Support:

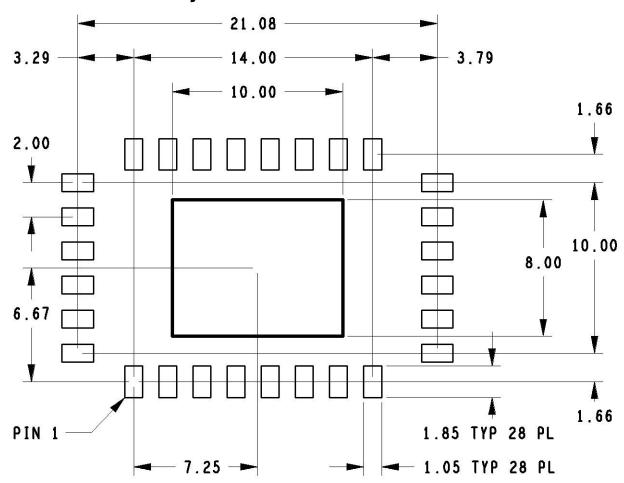
Windows Mobile 7 and 6.x, Windows CE 6.1 and 5, Linux v2.6, Android, Symbian

Mechanical


- Maximum Peak Reflow Temperature: 240°C
- Recommended Reflow Profile:

• Moisture Level Sensitivity: 1

Mechanical (Bottom view)



Pin numbering proceeds clockwise in the drawing above.

The nominal size of the part is 13.5x21.25mm with a height of 2.5mm.

Recommended Layout

PCB design requires detailed review of center exposed pad. This pad requires good thermal conductivity. Soldering coverage should be maximized and checked via x-ray for proper design. There is a trade off in providing enough soldering for conductivity and too much which allows the module to "float" on the paddle creating reliability issues. Sagrad recommends two approaches, a large center via that allows excess soldering to flow down into the host PCB with smaller vias arount it. Or many smaller vias with just enough space for the viscosity of the chosen solder/flux to allow some solder to flow into the smaller vias. Each of these approaches need to result in 60% or more full contact solder coverage on the paddle after reflow. Sagrad strongly encourages PCB layout teams to work with their EMS providers to ensure vias and solder paste designs will result in satisfactory performance.

Note: Pin 1 is on the bottom left of this diagram.

This view is viewed from the top.