MULTI MICRO HORNET
ORG1510-MK04/MK05
GPS / GNSS MODULE WITH INTEGRATED ANTENNA

Datasheet

OriginGPS.com
INDEX

1. SCOPE ... 5
2. DISCLAIMER ... 5
3. SAFETY INFORMATION .. 5
4. ESD SENSITIVITY ... 5
5. CONTACT INFORMATION ... 5
6. RELATED DOCUMENTATION .. 5
7. REVISION HISTORY .. 6
8. GLOSSARY ... 6
9. ABOUT HORNET FAMILY ... 9
10. ABOUT Multi Micro Hornet MODULE .. 9
11. ABOUT ORIGINGPS .. 10
12. DESCRIPTION .. 10
12.1. FEATURES .. 10
12.2. ARCHITECTURE ... 11
12.3. ORG1510-MK04 FEATURES DESCRIPTION ... 13
12.3.1. CONSTELLATION CONFIGURATION .. 13
12.3.2. PPS ... 13
12.3.3. STATIC NAVIGATION .. 13
12.3.4. ASSISTED GPS (AGPS) .. 13
12.3.4.1. LOCALLY-GENERATED AGPS (EMBEDDED ASSIST SYSTEM - EASY) 14
12.3.4.2. SERVER-GENERATED AGPS (EXTENDED PREDICTION - EPO) 14
12.3.4.3. HOTSTILL (EXTENDED PREDICTION ORBIT) ... 14
12.3.5. QUASI-ZENITH SATELLITE (QZSS) .. 15
12.3.6. SATELLITE - BASED AUGMENTATION SYSTEM (SBAS) 15
12.3.7. DIFFERENT GPS (DGPS) ... 15
12.3.8. JAMMING REJECTION - ACTIVE INTERFERENCE CANCELLATION (AIC) 15
12.3.9. POWER MANAGEMENT MODES .. 16
12.3.9.1. FULL POWER CONTINUOUS MODE ... 16
12.3.9.2. STANDBY MODE ... 16
12.3.9.3. PERIODIC MODE ... 17
12.3.9.4. ALWAYSLOCATE MODE ... 18
12.3.9.5 BACKUP MODE ... 19
12.3.10 CONFIGURATION SETTINGs .. 19
12.4. PADS ASSIGNMENT ... 19
13. MECHANICAL SPECIFICATIONS .. 20
14. ELECTRICAL SPECIFICATIONS ... 21
14.1. ABSOLUTE MAXIMUM RATINGS ... 21
14.2. RECOMMENDED OPERATING CONDITIONS ... 22
15. PERFORMANCE ... 23
15.1. ACQUISITION TIME .. 23
15.1.1. HOT START .. 23
15.1.2. SIGNAL REACQUISITION ... 23
15.1.3. AIDED START ... 23
15.1.4. WARM START ... 23
15.1.5. COLD START ... 23
15.2. SENSITIVITY ... 24
15.2.1. TRACKING ... 24
15.2.2. REACQUISITION ... 24
15.2.3. NAVIGATION ... 24
15.2.4. HOT START .. 24
15.2.5. AIDED START ... 24
15.2.6. COLD START ... 24
15.3. RECEIVED SIGNAL STRENGTH .. 25
15.4. POWER CONSUMPTION ... 25
15.5. POSITION ACCURACY ... 26
TABLE INDEX

TABLE 1 – RELATED DOCUMENTATION .. 5
TABLE 2 – REVISION HISTORY .. 6
TABLE 3 – PIN-OUT .. 19
TABLE 4 – MECHANICAL SUMMARY .. 20
TABLE 5 – ABSOLUTE MAXIMUM RATINGS ... 21
TABLE 6 – RECOMMENDED OPERATING CONDITIONS .. 22
TABLE 7 – ACQUISITION TIME .. 23
TABLE 8 – SENSITIVITY ... 24
TABLE 9 – RECEIVED SIGNAL STRENGTH .. 25
TABLE 10 – POWER CONSUMPTION ... 25
TABLE 11 – POSITION ACCURACY .. 26
TABLE 12 – DYNAMIC CONSTRAINTS ... 26
TABLE 13 – NMEA INPUT COMMANDS .. 30
TABLE 14 – SOLDERING PROFILE PARAMETERS ... 34
TABLE 15 – REEL QUANTITY ... 35
TABLE 16 – CARRIER TAPE DIMENSIONS .. 36
TABLE 17 – REEL DIMENSIONS .. 37
TABLE 18 – ORDERABLE DEVICES ... 37

FIGURE INDEX

FIGURE 1 – ORG1510-MK04 ARCHITECTURE ... 11
FIGURE 2 – MT3333 SYSTEM BLOCK DIAGRAM ... 12
FIGURE 3 – EASY TIMING .. 14
FIGURE 4 – PERIODIC POWER SAVING MODE ... 17
FIGURE 5 – ALWAYSLOCATE MODE ... 18
FIGURE 6 – PADS ASSIGNMENT .. 20
FIGURE 7 – MECHANICAL DRAWING ... 20
FIGURE 8 – 1PPS AND UTC TIMING .. 28
FIGURE 9 – REFERENCE SCHEMATIC DIAGRAM .. 29
FIGURE 10 – FOOTPRINT .. 29
FIGURE 11 – MODULE HOSTED ON FOOTPRINT ... 30
FIGURE 12 – HOST PCB .. 30
FIGURE 13 – EVB GROUND PLANE VIAS (TOP) .. 30
FIGURE 14 – EVB GROUND PLANE VIAS (BOTTOM) .. 30
FIGURE 15 – TYPICAL PCB STACK-UP .. 31
FIGURE 16 – RECOMMENDED SOLDERING PROFILE ... 33
FIGURE 17 – MODULE POSITION ... 35
FIGURE 18 – CARRIER TAPE ... 36
FIGURE 19 – REEL ... 37
FIGURE 20 - ORDERING OPTIONS .. 37
FIGURE 21 – BATTERY BACKUP IMPLEMENTATION ... 38
1. SCOPE
This document describes the features and specifications of Multi Micro Hornet ORG1510-MK04 GNSS receiver module with integrated antenna.

2. DISCLAIMER
All trademarks are properties of their respective owners. Performance characteristics listed in this document do not constitute a warranty or guarantee of product performance. OriginGPS assumes no liability or responsibility for any claims or damages arising out of the use of this document, or from the use of integrated circuits based on this document. OriginGPS assumes no liability or responsibility for unintentional inaccuracies or omissions in this document. OriginGPS reserves the right to make changes in its products, specifications and other information at any time without notice.

OriginGPS reserves the right to conduct, from time to time, and at its sole discretion, firmware upgrades. As long as those FW improvements have no material change on end customers, PCN may not be issued. OriginGPS navigation products are not recommended to use in life saving or life sustaining applications.

3. SAFETY INFORMATION
Improper handling and use can cause permanent damage to the product.

4. ESD SENSITIVITY
This product is ESD sensitive device and must be handled with care.

5. CONTACT INFORMATION
Support - support@origingps.com or Online Form
Marketing and sales - marketing@origingps.com
Web – www.origingps.com

6. RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>No</th>
<th>DOCUMENT NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Multi Micro Hornet – ORG1510 Evaluation Kit Datasheet</td>
</tr>
<tr>
<td>2</td>
<td>MTK NMEA Manual Packet 3.14</td>
</tr>
<tr>
<td>3</td>
<td>MTK FAQ.</td>
</tr>
<tr>
<td>4</td>
<td>Feature List and Command Usage- ORG4033 and ORG1510MK-04</td>
</tr>
</tbody>
</table>

TABLE 1 – RELATED DOCUMENTATION
7. REVISION HISTORY

<table>
<thead>
<tr>
<th>REVISION</th>
<th>DATE</th>
<th>CHANGE DESCRIPTION</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>October 15, 2015</td>
<td>First release</td>
<td>Ori Adas</td>
</tr>
<tr>
<td>1.1</td>
<td>October 28, 2015</td>
<td>Orderable devices table</td>
<td>Ori Adas</td>
</tr>
<tr>
<td>1.2</td>
<td>November 2, 2015</td>
<td>Configuration update- default: GPS and GLONASS. GPS and BEIDOU- optional.</td>
<td>Ori Adas</td>
</tr>
<tr>
<td>1.3</td>
<td>January 12, 2016</td>
<td>Update of Related Documentation, Glossary, Power Consumption, Periodic Mode</td>
<td>Mark Kriger</td>
</tr>
<tr>
<td>1.4</td>
<td>January 19, 2016</td>
<td>1PPS options update</td>
<td>Ori Adas</td>
</tr>
<tr>
<td>1.5</td>
<td>January 31, 2016</td>
<td>Configuration settings remark</td>
<td>Ori Adas</td>
</tr>
<tr>
<td>1.6</td>
<td>July 19, 2016</td>
<td>Backup mode update</td>
<td>Ori Adas</td>
</tr>
<tr>
<td>1.7</td>
<td>August 17, 2016</td>
<td>RESET, WAKEUP updates</td>
<td>Ori Adas</td>
</tr>
<tr>
<td>1.8</td>
<td>August 28, 2016</td>
<td>Typo corrections</td>
<td>Mark Kriger</td>
</tr>
<tr>
<td>1.9</td>
<td>November 16, 2016</td>
<td>Figure15 – Typical PCB stack-up update</td>
<td>Mark Kriger</td>
</tr>
<tr>
<td>2.0</td>
<td>November 24, 2016</td>
<td>Table 8 - Sensitivity test remark</td>
<td>Mark Kriger</td>
</tr>
<tr>
<td>2.1</td>
<td>February 12, 2017</td>
<td>Periodic backup/standby mode update</td>
<td>Mark Kriger</td>
</tr>
<tr>
<td>2.2</td>
<td>March 14, 2017</td>
<td>MK05 update Mechanical Specification – dimension tolerances update</td>
<td>Mark Kriger</td>
</tr>
</tbody>
</table>

TABLE 2 – REVISION HISTORY

8. GLOSSARY

A-GPS Assisted GPS
AC Alternating Current
ADC Analog to Digital Converter
AGC Automatic Gain Control
BPF Band Pass Filter
C/N0 Carrier to Noise density ratio [dB-Hz]
CDM Charged Device Model
CE European Community conformity mark
CEP Circular Error Probability
CMOS Complementary Metal-Oxide Semiconductor
CPU Central Processing Unit
CTS Clear-To-Send
CW Continuous Wave
DC Direct Current
DOP Dilution Of Precision
DR Dead Reckoning
DSP Digital Signal Processor
ECEF Earth Centred Earth Fixed
ECHA European Chemical Agency
REACH Registration, Evaluation, Authorisation and Restriction of Chemical substances
RF Radio Frequency
RHCP Right-Hand Circular Polarized
RMS Root Mean Square
RoHS Restriction of Hazardous Substances directive
ROM Read-Only Memory
RTC Real-Time Clock
RTS Ready-To-Send
SAW Surface Acoustic Wave
SBAS Satellite-Based Augmentation Systems
SID Sub-Identifier
SIP System In Package
SMD Surface Mounted Device
SMPS Switched Mode Power Supply
SMT Surface-Mounted Technology
SOC System On Chip
SPI Serial Peripheral Interface
SV Satellite Vehicle
TCXO Temperature-Compensated Crystal Oscillator
TTFF Time To First Fix
TTL Transistor-Transistor Logic
UART Universal Asynchronous Receiver/Transmitter
VCCI Voluntary Control Council for Interference by information technology equipment
VEP Vertical Error Probability
VGA Variable-Gain Amplifier
WAAS Wide Area Augmentation System
9. ABOUT HORNET FAMILY
OriginGPS GNSS receiver modules have been designed to address markets where size, weight, stand-alone operation, highest level of integration, power consumption and design flexibility - all are very important. OriginGPS’ Hornet family breaks size barrier, offering the industry’s smallest fully-integrated, highly-sensitive GPS and GNSS modules with integrated antennas or on-board RF connectors.

Hornet family features OriginGPS’ proprietary NFZ™ technology for high sensitivity and noise immunity even under marginal signal condition, commonly found in urban canyons, under dense foliage or when the receiver’s position in space rapidly changes.

Hornet family enables the shortest TTM (Time-To-Market) with minimal design risks.

Just connect power supply on a single layer PCB.

10. ABOUT MULTI MICRO HORNET MODULE
Micro Hornet is a complete SiP featuring miniature LGA SMT footprint designed to commit unique integration features for high volume cost sensitive applications.

Designed to support compact and traditional applications such as smart watches, wearable devices, asset trackers, Multi Micro Hornet ORG1510MK-04 module is a miniature multi-channel GPS and GLONASS/BEIDOU, SBAS, QZSS overlay systems receiver that continuously tracks all satellites in view, providing real-time positioning data in industry’s standard NMEA format.

Multi Micro Hornet ORG1510 module offers superior sensitivity and outstanding performance, achieving rapid TTFF in less than one second, accuracy of approximately two meters, and tracking sensitivity of -165dBm.

Sized only 10mm x 10mm Multi Micro Hornet ORG1510 module is industry’s small sized, record breaking solution.

Multi Micro Hornet ORG1510 module is introducing industry’s lowest energy per fix ratio, unparalleled accuracy and extremely fast fixes even under challenging signal conditions, such as in built-up urban areas, dense foliage or even indoor.

Integrated GPS SoC incorporating high-performance microprocessor and sophisticated firmware keeps positioning payload off the host, allowing integration in embedded solutions with low computing resources. Innovative architecture can detect changes in context, temperature, and satellite signals to achieve a state of near continuous availability by maintaining and opportunistically updating its internal fine time, frequency, and satellite ephemeris data while consuming mere microwatts of battery power.

11. ABOUT ORIGINGPS
OriginGPS is a world leading designer, manufacturer and supplier of miniature positioning modules, antenna modules and antenna solutions.

System (NFZ™) proprietary technology for faster position fix and navigation stability even under challenging satellite signal conditions.

Founded in 2006, OriginGPS is specializing in development of unique technologies that miniaturize RF modules, thereby addressing the market need for smaller wireless solutions.
12. DESCRIPTION

12.1. FEATURES

- Autonomous operation
- Active antenna on-board
- Pin to pin compatible with all ORG1410/ORG1411 GPS and ORG1510-R01 GNSS modules
- OriginGPS Noise Free Zone System (NFZ™) technology
- Fully integrating:
 Antenna element, Dual-stage LNA, SAW filter, TCXO, RTC crystal, GNSS SoC, LDO regulator, RF shield
- Concurrent tracking of multiple constellations
- Uses GPS and GLONASS/BEIDOU, QZSS constellations.
 - GPS L1 1575.42 frequency, C/A code
 - GLONASS L1 FDMA 1598-1606MHz frequency band, SP signal.
 - BEIDOU B1 1561.098MHz frequency band.
- SBAS (WAAS, EGNOS, MSAS and GAGAN)
- DGPS capability
- 99 search channels and 33 simultaneous tracking channels
- Ultra-high Sensitivity down to -165dBm enabling Indoor Tracking
- TTFF of < 1s in 50% of trials under Hot Start conditions
- Low Power Consumption of ≤ 15mW
- High Accuracy of < 2.5m in 50% of trials
- AGPS support: Embedded Assist System (EASY) and Extended Prediction Orbit (EPO) and HotStill
- Indoor and outdoor Multipath and cross-correlation mitigation
- Jamming Rejection – 12 multi-tone Active Interference Cancellation (AIC)
- 8 Megabit built in flash
- Power management modes: Full Power Continuous, Standby, Periodic and AlwaysLocate™
- NMEA commands and data output over UART serial interface
- High update messages rate of 1,2,5,10Hz
- 1PPS Output
- Static Navigation
- Single voltage supply 3.3V
- Ultra-small LGA footprint of 10mm x 10mm
- Ultra-low weight of 2.4g
- Surface Mount Device (SMD)
- Optimized for automatic assembly and reflow equipment
- Operating from -40°C to +85°C
- FCC, CE, VCCI compliant
- RoHS II/REACH compliant
12.2. ARCHITECTURE

Antenna
OriginGPS proprietary Microstrip Patch Antenna collects GNSS signals from the medium. Antenna is built from hi-K ceramic element mounted on top of RF shield, providing stable resonance.

GNSS SAW Filter
Band-Pass SAW filter eliminates out-of-band signals that may interfere to GNSS reception. GNSS SAW filter is optimized for low Insertion Loss in GNSS band and low Return Loss outside it.

GNSS LNA
Dual-stage cascaded LNAs amplify GNSS signals to meet RF down converter input threshold. Noise Figure optimized design was implemented to provide maximum sensitivity.

TCXO
Highly stable 26MHz oscillator controls down conversion process in RF block of the GNSS SoC. Characteristics of this component are important factors for higher sensitivity, shorter TTFF and better navigation stability.

RTC crystal
RTC 32.768 KHz quartz crystal with very tight specifications is necessary for maintaining Hot Start and Warm Start capabilities of the module.

LDO regulator (optional)
RF LDO provides regulated voltage supply over wide input voltage range, with low quiescent current and high PSRR.

RF Shield
RF enclosure avoids external interference from compromising sensitive circuitry inside the module. RF shield also blocks module’s internal high frequency emissions from being radiated.
MT3333 GNSS SoC
The MT3333, multi-GNSS System on Chip designed by MediaTek, which is the world's leading digital media solution provider and largest fab-less IC Company in Taiwan. It is a hybrid positioning processor that combines GPS, GLONASS, GALILEO, BEIDOU, SBAS, QZSS, DGPS and AGPS to provide a high performance navigation solution. MT3333 is a full SoC built on a low-power RF CMOS, incorporating GNSS RF, GNSS baseband, integrated navigation solution software, ARM® processor and serial flash.

![MT3333 System Block Diagram and Peripheral](image)

FIGURE 2 – MT3333 SYSTEM BLOCK DIAGRAM AND PERIPHERAL

MT3333 SoC includes the following units:

- **GNSS radio subsystem** containing single input dual receive paths for concurrent GPS and GLONASS or GPS and BEIDOU, mixer with current mode interface between the mixer and multi-modes low pass filter, fractional-N synthesizer, integrated self-calibrating filters, IF VGA with AGC, high-sample rate ADCs with adaptive dynamic range.

- **Measurement subsystem** including DSP core for GNSS signals acquisition and tracking, interference scanner and detector, interference removers, multipath and cross-correlation detectors, dedicated DSP code ROM and DSP cache RAM.

- **Measurement subsystem interfaces** GNSS radio subsystem.

- **Navigation subsystem** comprising ARM7® microprocessor system for position, velocity and time solution, program ROM, data RAM, cache and patch RAM and SPI flash.

- **Peripheral Controller subsystem** containing UART Host interface, RTC block, wake up signal option, and GPIO.

- **Peripheral Controller subsystem interfaces** navigation subsystem, PLL and PMU subsystems.

- **Navigation subsystem interfaces** measurement subsystem.

- **PMU subsystem** containing voltage regulators for RF and baseband domains.
12.3. ORG1510-MK04 FEATURES DESCRIPTION:

12.3.1 CONSTELLATION CONFIGURATION

- GPS and GLONASS - default.
- GPS and BEIDOU - available.

For ordering this option contact marketing@origingps.com

12.3.2 1PPS

1PPS (Pulse Per Second) signal output available on configuration:

- At 2D Fix only.
- At 3D Fix only.
- After the first Fix
- Always - default configuration.

For ordering other 1PPS options contact marketing@origingps.com

The pulse is configurable for required duration, frequency and active high/low via command.

The pulse may vary 30nS (1 σ). The relationship between the PPS signal and UTC is unspecified.

12.3.3 Static Navigation

Static Navigation is an operational mode in which the receiver will freeze the position fix when the speed falls below a threshold (indicating that the receiver is stationary). The course is also frozen, and the speed is reported as 0. The navigation solution is then unfrozen when the speed increases above a threshold or when the computed position exceeds a set distance from the frozen position (indicating that the receiver is again in motion). The speed threshold can be set via a command. Static Navigation is disabled by default, but can be enabled by command. This feature is useful for applications in which very low dynamics are not expected, the classic example being an automotive application.

12.3.4 Assisted GPS (AGPS)

Assisted GPS (or Aided GPS) is a method by which TTFF is reduced using information from a source other than broadcast GPS signals. The necessary ephemeris data is calculated either by the receiver itself (locally-generated ephemeris) or a server (server-generated ephemeris) and stored in the module.

ORG1510-MK04 has EASY, EPO and HotStill technology to allow for Hot Starts even in weak signal conditions and moving start-ups. EPO (Extended Prediction Orbit) is one of MediaTek’s innovative proprietary off-line server based AGPS solution. Host could use an application to store and load the EPO files into device. With multi-constellation EPO, the user experience will be enhanced by the improved Time To First Fix (TTFF) and better first fix accuracy.
12.3.4.1 Locally-generated AGPS (Embedded Assist System – EASY)

The EASY™ is embedded assist system for quick positioning, the GPS engine will calculate and predict automatically the single ephemeris (Max. up to 3 days) when power on, and save the predict information into the memory, GPS engine will use these information for positioning if no enough information from satellites, so the function will be helpful for positioning and TTFF improvement under indoor or urban condition.

Up to 3 days extension for single received ephemeris:

![Image of EASY™ TTFF Timing](image)

FIGURE 3 – EASY™ TTFF TIMING

12.3.4.2 Server-generated AGPS (Extended Prediction Orbit – EPO)

The AGPS (EPO™) supply the predicated Extended Prediction Orbit data to speed TTFF, users can download the EPO data to GNSS engine from the FTP server by internet or wireless network, the GNSS engine will use the EPO data to assist position calculation when the navigation information of satellites are not enough or weak signal zone.

Host could use an application to store and load the EPO files into device. With multi-Constellation EPO, the user experience will be enhanced by the improved Time To First Fix (TTFF) and better first fix accuracy.

The predicted ephemeris file is obtained from the AGPS server and is injected into the module over serial port 1 (RX1). These predictions do not require local broadcast ephemeris collection, and they are valid for up to 14 days.

12.3.4.3 HotStill (Extended Prediction Orbit)

HotStill is one of MTK’s innovative proprietary Off-line client based A-GPS solution which could greatly accelerate GPS TTFF (Time to First Fix) in urban canyon or weak signal environment from several minutes to only few seconds. It works as a background software running on the host processor to predicate satellite orbit navigation data and generate Broadcast Ephemeris Extension (BEE) from received broadcast ephemeris as well as no network connection requirements.
12.3.5 Quasi-Zenith Satellite System (QZSS)

The three satellites of the Japanese SBAS are in a highly-inclined elliptical orbit which is geosynchronous (not geostationary) and has analemma-like ground tracks. This orbit allows continuous coverage over Japan using only three satellites. Their primary purpose is to provide augmentation to the GPS system, but the signals may also be used for ranging. NMEA reporting for QZSS may be enabled/disabled by the user.

12.3.6 Satellite-Based Augmentation System (SBAS)

The ORG1510-MK04 receiver is capable of using Satellite-Based Augmentation System (SBAS) satellites as a source of both differential corrections and satellite range measurements. These systems (WAAS, EGNOS, MSAS, and GAGAN) use geostationary satellites to transmit regional differential corrections via a GNSS-compatible signal. The use of SBAS corrections can significantly improve position accuracy, and is enabled by default.

12.3.7 Differential GPS (DGPS)

DGPS is a Ground-Based Augmentation System (GBAS) for reducing position errors by applying corrections from a set of accurately-surveyed ground stations located over a wide area. These reference stations measure the range to each satellite and compare it to the known-good range. The differences can then be used to compute a set of corrections which are transmitted to a DGPS receiver, either by radio or over the internet. The DGPS receiver can then send them to the serial port 1 (RX1) using the RTCM SC-104 message protocol. The corrections can significantly improve the accuracy of the position reported to the user. The receiver can accept and apply either the RTCM SC-104 messages or SBAS differential data.

12.3.8 Jamming Rejection – Active Interference Cancellation (AIC)

The ORG1510-MK04 detect, track and removes narrow-band interfering signals (jamming signals) without the need for external components or tuning. It tracks and removes up to 12 CW (Continuous Wave) type signals up to −80 dBm (total power signal levels). By default, the jamming detection is enabled but can be disabled by command. This feature is useful both in the design stage and during the production stage for uncovering issues related to unexpected jamming. When enabled, AIC will increase current consumption by about 1 mA. Impact on GNSS performance is minimal at low jamming levels, however at high jamming levels (e.g. -90 to -80 dBm), the RF signal sampling ADC starts to become saturated after which the GNSS signal levels start to diminish.
12.3.9 Power Management Modes

The ORG1510-MK04 support operational modes that allow them to provide positioning information at reduced overall current consumption. Availability of GNSS signals in the operating environment will also be a factor in choice of power management modes. The designer can choose a mode that provides the best trade-off of performance versus power consumption.

The power management modes are described below, and can be enabled via command:

- **Full Power Continuous**- for best GNSS performance
- Power save mode to optimize power consumption:
 - Standby
 - Periodic
 - AlwaysLocate™
- Backup mode

12.3.9.1 Full Power Continuous Mode

The modules start up in full power continuous mode. This mode uses the acquisition engine at full performance resulting in the shortest possible TTFF and the highest sensitivity. It searches for all possible satellites. The receiver then switches to the tracking engine to lower the power consumption when:

- A valid GPS/GNSS position is obtained
- The ephemeris for each satellite in view is valid

To return to Full Power mode (from a low power mode), send the following command: `PMTK225,0`

[Just after the module wakes up from its previous sleep cycle].

12.3.9.2 Standby Mode

In this mode, the receiver stops navigation, the internal processor enters standby state, and the current drain at main supply (VCC) is reduced. Standby mode is entered by sending the following command: `PMTK161,0`

The host can then wake up the module from Standby mode to Full Power mode by sending any byte to the serial port.
12.3.9.3 Periodic Mode

This mode allows autonomous power on/off with reduced fix rate to reduce average power consumption. In periodic mode, the main power supply VCC is still powered, but power distribution to internal circuits is controlled by the receiver.

![Periodic power saving mode](image)

FIGURE 4 – PERIODIC POWER SAVING MODE

Enter periodic mode by sending the following command:

```
PMTK225,<Type>,<Run_time>,<Sleep_time>,<2nd_run_time>,<2nd_sleep_time>*<checksum>
```

Where:

- **Type** = 1 for Periodic backup mode, 2 for Periodic standby mode
- **Run_time** = Full Power period (ms)
- **Sleep_time** = Standby period (ms)
- **2nd_run_time** = Full Power period (ms) for extended acquisition if GNSS acquisition fails during Run_time.
- **2nd_sleep_time** = Standby period (ms) for extended sleep if GNSS acquisition fails during Run_time.

Example: `PMTK225,2,3000,12000,18000,72000`

for periodic mode with 3 s navigation and 12 s sleep. The acknowledgement response for this command is: `PMTK001,225,3`

Periodic mode is exited back to Full Power Continuous Mode by sending the command: `PMTK225,0` just after the module wakes up from a previous sleep cycle.
12.3.9.4 AlwaysLocate™ Mode

AlwaysLocate™ is an intelligent controller of the Periodic mode; the main power supply VCC is still powered up, but power distribution is internally controlled. Depending on the environment and motion conditions, the module can autonomously and adaptively adjust the parameters of the Periodic mode, e.g. ON/OFF ratio and fix rate to achieve a balance in positioning accuracy and power consumption. The average current can vary based on conditions.

![Power vs. Time Graph](image)

FIGURE 5 – AlwaysLocate™ MODE: POWER VS. TIME

Enter AlwaysLocate™ mode by sending the following NMEA command:

```
PMTK225,<mode>*<checksum><CR><LF>
```

Where: mode=9 for AlwaysLocate™

Example:

```
PMTK225,9
```

The acknowledgement response for the command is:

```
PMTK001,225,3
```

The user can exit low power modes to Full Power by sending NMEA command:

```
PMTK225,0
```

Just after the module wakes up from its previous sleep cycle.
12.3.9.5 Backup Mode

Backup Mode means a low quiescent power state where receiver operation is stopped. The VCC is powered on but the current consumption is minimal. After waking up, the receiver uses all internal aiding, including GNSS time, Ephemeris, and Last Position, resulting in the fastest possible TTFF in either hot or warm start modes. During Backup State, the I/O block is powered off. The suggestion is that the host forces its outputs to a low state or to a high-Z state during the Backup State to minimize small leakage currents at receiver’s input signals.

Before sending the command the FORCE_ON pin [pin 1] must be tied to ground. In order to enter backup mode send NMEA command: PMTK225,4. FORCE_ON must be tied to ground in order to stay in BACKUP mode.

Example:
PMTK225,4 Enter backup mode

NMEA Return feedback:
PMTK001,225,3

Module will stay in BACKUP mode while FORCE ON is tied to ground. To Exit from BACKUP mode, disconnect FORCE_ON from ground and force full power. The Current consumption is 10uA in BACKUP mode.

12.3.10 Configuration settings

Currently, the configuration settings will be erased after turning down the power. Be aware to this issue on power cycles while shutting down the module.

12.4. PADS ASSIGNMENT

<table>
<thead>
<tr>
<th>PAD</th>
<th>NAME</th>
<th>FUNCTION</th>
<th>DIRECTION</th>
<th>Logic level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FORCE ON</td>
<td>Forced full-power mode signal – Active Low</td>
<td>Input</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>1PPS</td>
<td>UTC Time Mark</td>
<td>Output</td>
<td>2.8V</td>
</tr>
<tr>
<td>3</td>
<td>TX</td>
<td>UART Transmit (Serial Output)</td>
<td>Output</td>
<td>2.8V</td>
</tr>
<tr>
<td>4</td>
<td>Vcc</td>
<td>System Power</td>
<td>Power</td>
<td>3.3V</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>System Ground</td>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>GPIO12</td>
<td>GPIO12/ WAKEUP/ EINT0</td>
<td>Input/Output</td>
<td>2.8V</td>
</tr>
<tr>
<td>7</td>
<td>CTS</td>
<td>UART Clear To Send/ 2nd UART RX/ I2C CLK</td>
<td>Input</td>
<td>2.8V</td>
</tr>
<tr>
<td>8</td>
<td>RESET</td>
<td>System Reset– Active Low</td>
<td>Input</td>
<td>2.8V</td>
</tr>
<tr>
<td>9</td>
<td>RTS</td>
<td>UART Ready To Send/ 2nd UART TX/ I2C DATA</td>
<td>Output</td>
<td>2.8V</td>
</tr>
<tr>
<td>10</td>
<td>RX</td>
<td>UART Receive (Serial Input)</td>
<td>Input</td>
<td>2.8V</td>
</tr>
</tbody>
</table>

TABLE 3 – PIN-OUT
13. MECHANICAL SPECIFICATIONS

- ORG1510 module has advanced ultra-miniature LGA SMD packaging sized 10mm x 10mm.
- ORG1510 built on a PCB assembly enclosed with metallic RF shield box and antenna element on top of it.
- There are 10 castellated LGA SMT pads made Cu base and ENIG plating on bottom side.

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>10.00 +0.20/-0.05</td>
<td>10.00 +0.30/-0.05</td>
<td>6.1 +0.20/-0.05</td>
</tr>
<tr>
<td>inch</td>
<td>0.394 +0.008/-0.002</td>
<td>0.394 +0.012/-0.002</td>
<td>0.24 +0.008/-0.002</td>
</tr>
</tbody>
</table>

*Weight: 2.4 Gram, 0.08 Oz

TABLE 4 – MECHANICAL SUMMARY
14. ELECTRICAL SPECIFICATIONS

14.1. ABSOLUTE MAXIMUM RATINGS

Stresses exceeding Absolute Maximum Ratings may damage the device.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage</td>
<td>(V_{CC})</td>
<td>-0.30</td>
<td>+4.3</td>
<td>V</td>
</tr>
<tr>
<td>Power Supply Current(^1)</td>
<td>(I_{CC})</td>
<td>100</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>RF Input Voltage(^2)</td>
<td>(V_{RF})</td>
<td>-0.30</td>
<td>+3.6</td>
<td>V</td>
</tr>
<tr>
<td>I/O Voltage</td>
<td>(V_{IO})</td>
<td>-0.30</td>
<td>+3.6</td>
<td>V</td>
</tr>
<tr>
<td>I/O Source/Sink Current</td>
<td>(I_{IO})</td>
<td>+8</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>ESD Voltage</td>
<td>(V_{IO/RF, HBM Model}(^3)) (+/-) 1000</td>
<td>(+/-) 3000</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{IO/RF, MM Model}(^4)) (+/-) 100</td>
<td>(+/-) 300</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>RF Power(^5)</td>
<td>(P_{RF})</td>
<td>+10</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+30</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>(T_{AMB})</td>
<td>-45</td>
<td>+90</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{ST})</td>
<td>-50</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Temperature(^6)</td>
<td>(T_{LEAD})</td>
<td>-5</td>
<td>+260</td>
<td>°C</td>
</tr>
</tbody>
</table>

TABLE 5 – ABSOLUTE MAXIMUM RATINGS

Notes:
1. Inrush current of up to 100mA for about 20µs duration.
2. Voltage applied on antenna element.
3. Human Body Model (HBM) contact discharge per EIA/JEDEC JESD22-A114D. Step: 500V (+/-).
4. Machine Model (MM) contact discharge per EIA/JEDEC JESD22-A115C. Step: 50V (+/-).
5. Power delivered to antenna element.
6. Lead temperature at 1mm from case for 10s duration.
14.2. RECOMMENDED OPERATING CONDITIONS

Exposure to stresses above Recommended Operating Conditions may affect device reliability.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MODE / PAD</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage</td>
<td>V_{CC}</td>
<td>V_{CC}</td>
<td></td>
<td>$+3$</td>
<td>$+3.3$</td>
<td>$+3.6$</td>
<td>V</td>
</tr>
<tr>
<td>Input pin voltage range</td>
<td>V_{in}</td>
<td></td>
<td></td>
<td>-0.3</td>
<td></td>
<td>$+3.6$</td>
<td>V</td>
</tr>
<tr>
<td>Digital IO Pin Low level input voltage</td>
<td>V_{il}</td>
<td></td>
<td>-0.3</td>
<td></td>
<td>$+0.7$</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Digital IO Pin High level input voltage</td>
<td>V_{ih}</td>
<td></td>
<td>$+2.1$</td>
<td></td>
<td>$+3.6$</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Digital IO Pin Low level output voltage</td>
<td>V_{ol}</td>
<td>$i_{ol}=2mA$</td>
<td>-0.3</td>
<td></td>
<td></td>
<td>$+0.4$</td>
<td>V</td>
</tr>
<tr>
<td>Digital IO Pin High level output voltage</td>
<td>V_{oh}</td>
<td>$i_{oh}=2mA$</td>
<td>$+2.4$</td>
<td></td>
<td>$+2.8$</td>
<td>$+3.1$</td>
<td>V</td>
</tr>
</tbody>
</table>

Power Supply Current

ICC

<table>
<thead>
<tr>
<th>Acquisition</th>
<th>GPS</th>
<th>23</th>
<th>32</th>
<th>mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS+GLONASS</td>
<td>28</td>
<td>32</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Tracking</td>
<td>GPS</td>
<td>20.2</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>GPS+GLONASS</td>
<td>24</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Standby</td>
<td>0.5</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>backup</td>
<td>10</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RF Input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Impedance</td>
<td>Z_{in}</td>
<td></td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>R_{LIN}</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input Power Range</td>
<td>P_{IN}</td>
<td>-165</td>
<td>-110</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Input Frequency Range</td>
<td>f_{IN}</td>
<td>1560</td>
<td>1620</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{AMB}</td>
<td>-40</td>
<td>$+85$</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{ST}</td>
<td>-50</td>
<td>$+125$</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>R_{H}</td>
<td>5</td>
<td>95</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Typical values under static signal conditions of -130dBm and ambient temperature of +25°C and low gain configuration.
2. Longer TTFF is expected while operating below -30°C to -40°C.
3. Relative Humidity is within Operating Temperature range.

TABLE 6 – RECOMMENDED OPERATING CONDITIONS
15. PERFORMANCE

15.1. ACQUISITION TIME

TTFF (Time To First Fix) – is the period of time from module’s power-up till valid position estimation.

15.1.1. HOT START

Hot Start results either from a software reset after a period of continuous navigation or a return from a short idle period that was preceded by a period of continuous navigation. During Hot Start all critical data (position, velocity, time, and satellite ephemeris) is valid to the specified accuracy and available in RAM.

15.1.2. SIGNAL REACQUISITION

Reacquisition follows temporary blocking of GNSS signals. Typical reacquisition scenario includes driving through tunnel.

15.1.3. AIDED START

Aided Start is a method of effectively reducing TTFF by providing valid satellite ephemeris data. Aiding can be implemented using Embedded Assist System (EASY) and Extended Prediction Orbit (EPO) and HotStill

15.1.4. WARM START

Warm Start typically results from user-supplied position and time initialization data or continuous RTC operation with an accurate last known position available in RAM. In this state position and time data are present and valid, but satellite ephemeris data validity has expired.

15.1.5. COLD START

Cold Start occurs when satellite ephemeris data, position and time data are unknown. Typical Cold Start scenario includes first power application.

<table>
<thead>
<tr>
<th>OPERATION¹</th>
<th>MODE</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Start</td>
<td></td>
<td>< 1</td>
<td>s</td>
</tr>
<tr>
<td>Aided Start³</td>
<td></td>
<td>< 3</td>
<td>s</td>
</tr>
<tr>
<td>Warm Start</td>
<td>GPS + GLONASS</td>
<td>< 26</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td>GPS</td>
<td>< 29</td>
<td>s</td>
</tr>
<tr>
<td>Cold Start</td>
<td>GPS + GLONASS</td>
<td>< 23</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td>GPS</td>
<td>< 31</td>
<td>s</td>
</tr>
<tr>
<td>Signal Reacquisition²</td>
<td></td>
<td>< 3</td>
<td>s</td>
</tr>
</tbody>
</table>

TABLE 7 – ACQUISITION TIME

Notes:
1. EVK is 24-hrs. Static under signal conditions of -130dBm and ambient temperature of +25°C.
2. Outage duration ≤ 30s.
3. Dependent on aiding data connection speed and latency
15.2. SENSITIVITY

15.2.1. TRACKING
Tracking is an ability of receiver to maintain valid satellite ephemeris data. During tracking receiver may stop output valid position solutions. Tracking sensitivity defined as minimum GNSS signal power required for tracking.

15.2.2. REACQUISITION
Reacquisition follows temporary blocking of GNSS signals. Reacquisition sensitivity defined as minimum GNSS signal power required for reacquisition.

15.2.3. NAVIGATION
During navigation receiver consequently outputs valid position solutions. Navigation sensitivity defined as minimum GNSS signal power required for reliable navigation.

15.2.4. HOT START
Hot Start sensitivity defined as minimum GNSS signal power required for valid position solution under Hot Start conditions.

15.2.5. AIDED START
Aided Start sensitivity defined as minimum GNSS signal power required for valid position solution following aiding process.

15.2.6. COLD START
Cold Start sensitivity defined as minimum GNSS signal power required for valid position solution under Cold Start conditions, sometimes referred as ephemeris decode threshold.

<table>
<thead>
<tr>
<th>OPERATION¹</th>
<th>MODE</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking</td>
<td>GPS</td>
<td>-165</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>GLONASS</td>
<td>-165</td>
<td>dBm</td>
</tr>
<tr>
<td>Navigation</td>
<td>GPS</td>
<td>-163</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>GLONASS</td>
<td>-163</td>
<td>dBm</td>
</tr>
<tr>
<td>Reacquisition²</td>
<td>GPS+GLONASS</td>
<td>-160</td>
<td>dBm</td>
</tr>
<tr>
<td>Hot Start</td>
<td>GPS+GLONASS</td>
<td>-163</td>
<td>dBm</td>
</tr>
<tr>
<td>Aided Start</td>
<td>GPS+GLONASS</td>
<td>-160</td>
<td>dBm</td>
</tr>
<tr>
<td>Cold Start</td>
<td>GPS+GLONASS</td>
<td>-148</td>
<td>dBm</td>
</tr>
</tbody>
</table>

** TABLE 8 – SENSITIVITY **

** The above values have been tested at update rate of 1 Hz. While working in a higher update rate there is some signal degradation. **
15.3. RECEIVED SIGNAL STRENGTH

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/N₀</td>
<td>45</td>
<td>dB-Hz</td>
</tr>
</tbody>
</table>

TABLE 9 – RECEIVED SIGNAL STRENGTH

Notes:
1. EVK is static, ambient temperature is +25°C.
2. Outage duration ≤ 30s.
3. Aiding using Broadcast Ephemeris (Ephemeris Push™) or Extended Ephemeris (CGEE™ or SGEE™).
4. Average C/N₀ reported for 4 SVs, EVK is 24-hrs. Static, outdoor, ambient temperature is +25°C.

15.4. POWER CONSUMPTION

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>MODE</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition</td>
<td>GPS</td>
<td>75.5</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>GPS + GLONASS</td>
<td>91.8</td>
<td>mW</td>
</tr>
<tr>
<td>Tracking</td>
<td>GPS</td>
<td>66.2</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>GPS + GLONASS</td>
<td>78.7</td>
<td>mW</td>
</tr>
<tr>
<td>Periodic: Low Power Tracking</td>
<td>15 sec asleep 3 sec awake</td>
<td>14.5</td>
<td>mW</td>
</tr>
<tr>
<td>Standby state</td>
<td></td>
<td>1.65</td>
<td>mW</td>
</tr>
<tr>
<td>Backup state</td>
<td></td>
<td>49.5</td>
<td>uW</td>
</tr>
</tbody>
</table>

TABLE 10 – POWER CONSUMPTION

Note:
1. Typical values under static signal conditions of -130dBm and ambient temperature of +25°C. Measured voltage= 3.28V.
15.5. POSITION ACCURACY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Constellation</th>
<th>CEP (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Position Accuracy</td>
<td>GPS</td>
<td>2.5</td>
</tr>
<tr>
<td>Horizontal Position Accuracy</td>
<td>Glonass</td>
<td>2.6</td>
</tr>
<tr>
<td>Horizontal Position Accuracy</td>
<td>BeiDou</td>
<td>10.2</td>
</tr>
<tr>
<td>Horizontal Position Accuracy</td>
<td>GPS + Glonass</td>
<td>2.5</td>
</tr>
<tr>
<td>Horizontal Position Accuracy</td>
<td>GPS + BeiDou</td>
<td>2.5</td>
</tr>
</tbody>
</table>

TABLE 11 – ORG1510-MK04 POSITION ACCURACY

Notes:
1. Module is static under signal conditions of -130dBm, ambient temperature is +25°C.
2. EVK is 24-hrs. Static, ambient temperature is +25°C.
3. Speed over ground ≤ 30m/s.

15.6. DYNAMIC CONSTRAINS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>Metric</th>
<th>Imperial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity and Altitude1</td>
<td>515m/s and 18,288m</td>
<td>1,000knots and 60,000ft</td>
</tr>
<tr>
<td>Velocity</td>
<td>600m/s</td>
<td>1,166knots</td>
</tr>
<tr>
<td>Altitude</td>
<td>-500m to 24,000m</td>
<td>-1,640ft to 78,734ft</td>
</tr>
<tr>
<td>Acceleration</td>
<td>4g</td>
<td></td>
</tr>
<tr>
<td>Jerk</td>
<td>5m/s³</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 12 – DYNAMIC CONSTRAINS

Note:
1. Standard dynamic constrains according to regulatory limitations.
16. INTERFACE

16.1. POWER SUPPLY
It is recommended to keep the power supply on all the time in order to maintain RTC block active and keep satellite data in RAM for fastest possible TTFF. When V\text{cc} is removed settings are reset to factory default and the receiver performs Cold Start on next power up.

16.1.1. Nominal V\text{cc} = 3.3V
V\text{cc} is 3.3v DC and must be provided from regulated power supply. During tracking the processing is less intense compared to acquisition, therefore power consumption is lower.
Filtering is important to manage high alternating current flows on the power input connection. An additional LC filter on ORG1510-MK04 power input may be needed to reduce system noise. The high rate of ORG1510-MK04 input current change requires low ESR bypass capacitors. Additional higher ESR output capacitors can provide input stability damping. The ESR and size of the output capacitors directly define the output ripple voltage with a given inductor size. Large low ESR output capacitors are beneficial for low noise.

16.1.2. GROUND
Ground pad must be connected to host PCB Ground with shortest possible trace or by multiple VIAs.

16.2. CONTROL INTERFACE

16.2.1 UART- HOST INTERFACE
Multi Micro Hornet ORG1510-MK04 has a standard UART ports:

16.2.1.1 TX
TX used for GPS data reports. Output logic high voltage level is 2.8V.
The TX serial data line outputs NMEA serial data at a default bit rate of 9600 bps.
When no serial data is being output the TX data line idles high.

16.2.1.2 RX
RX used for receiver control. Input logic high voltage level is 2.8V.
The RX data line accepts NMEA commands at a default bit rate of 9600 bps.
When the receiver is powered down, do not back drive this or any other GPIO line.
The idle state for serial data from the host computer is logic 1.

16.2.2 DATA INTERFACE

16.2.2.1 FORCE-ON
Entering into BACKUP mode by sending SW command and tied to ground the FORCE_ON pin [pin 1]. FORCE_ON must be tied to ground in order to stay in BACKUP mode.
Module will stay in BACKUP mode while FORCE ON is tied to ground.
To Exit from BACKUP mode, disconnect FORCE_ON from ground and force full power.
When inactive, it should be floating.

16.2.2.2 RESET
In addition, to NMEA command for reset- $PMTK104*37, external reset is available through RESET pad. Active low signal. Signal logic level of 2.8V.
16.2.2.3 1PPS

Pulse-Per-Second (PPS) output provides a pulse signal for timing purposes. The pulse is configurable for required duration, frequency and active high/low via command. The pulse may vary 30 nS (1 σ). The relationship between the PPS signal and UTC is unspecified.

Use Proprietary Mediatek command PMTK255 to enable or disable this functionality:

- PMTK255,1 => enable PPS
- PMTK255,0 => disable PPS

![Figure 8 – 1PPS AND UTC](image)

1PPS supports 1Hz NMEA output, but at baud rate of 9600 bps, if there are many NMEA sentences output, per second transmission may exceed one second.

16.2.2.4 WAKEUP

When the ORG1510-mk04 is on (full power) the output will be high at 3.3V level.
When the ORG1510-mk04 in on Standby or backup mode the output will be low (ground).
Typical output voltage is 3.3V.
On low power modes (Periodic and AlwaysLocate) when the ORG1510-mk04 is off the wakeup level is low (and the wakeup returns to high level when the module returns to full power).
17. **TYPICAL APPLICATION CIRCUIT**

![Reference Schematic Diagram](image)

FIGURE 9 – REFERENCE SCHEMATIC DIAGRAM

18. **RECOMMENDED PCB LAYOUT**

18.1. **FOOTPRINT**

![Footprint Diagram](image)

FIGURE 10 – FOOTPRINT

Ground paddle at the middle should be connected to main Ground plane by multiple VIAs. Ground paddle at the middle must be solder masked. Silk print of module’s outline is highly recommended for SMT visual inspection.
18.2. HOST PCB

FIGURE 11 – MODULE HOSTED ON FOOTPRINT

FIGURE 12 – HOST PCB

FIGURE 13 – EVB GROUND PLANE VIAS (TOP)

FIGURE 14 – EVB GROUND PLANE VIAS (BOTTOM)
18.3. PCB STACK-UP

FIGURE 15 – TYPICAL PCB STACK-UP

18.4. PCB LAYOUT RESTRICTIONS

Switching and high-speed components, traces and VIAs must be kept away from ORG1510 module. Signal traces to/from module should have minimum length. Recommended minimal distance from adjacent active components is 3mm. Ground pads must be connected to host PCB Ground with shortest possible traces or VIAs. In case of tight integration constrain or co-location with adjacent high speed components like CPU or memory, high frequency components like transmitters, clock resonators or oscillators, LCD panels or CMOS image sensors, contact OriginGPS for application specific recommendations.

19. DESIGN CONSIDERATIONS

ORG1510 incorporates on-board antenna element that is perfectly matched to receiver front-end, frequency trimmed to GPS band and Right-Hand Circularly Polarized (RHCP). OriginGPS proprietary module structure is providing stable resonance of antenna in GPS band with very low dependence on host PCB size, it’s conducting planes geometry and stack-up.

To prevent PCB factor on antenna resonance avoid copper pouring on module side.

To prevent module orientation from causing polarization losses in on-board antenna avoid long and narrow copper planes beneath.

ORG1510 operates with received signal levels down to -167dBm and can be affected by high absolute levels of RF signals out of GNSS band, moderate levels of RF interference near GNSS band and by low-levels of RF noise in GNSS band.

RF interference from nearby electronic circuits or radio transmitters can contain enough energy to desensitize ORG1510. These systems may also produce levels of energy outside of GNSS band, high enough to leak through RF filters and degrade the operation of the radios in ORG1510.

This issue becomes more critical in small products, where there are industrial design constraints. In that environment, transmitters for Wi-Fi, Bluetooth, RFID, cellular and other radios may have antennas physically close to ORG1510.

To prevent degraded performance of ORG1510, OriginGPS recommends performing EMI/jamming susceptibility tests for radiated and conducted noise on prototypes and assessing risks of other factors. Contact OriginGPS for application specific recommendations and design review services.
20. COMMANDS DESCRIPTION

<table>
<thead>
<tr>
<th>Command ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMTK000</td>
<td>Test. This command will be echoed back to the sender (for testing the communications link).</td>
</tr>
<tr>
<td>PMTK101</td>
<td>Perform a HOT start</td>
</tr>
<tr>
<td>PMTK102</td>
<td>Perform a WARM start</td>
</tr>
<tr>
<td>PMTK103</td>
<td>Perform a COLD start</td>
</tr>
<tr>
<td>PMTK104</td>
<td>Perform a system reset (erasing any stored almanac data) and then a COLD start</td>
</tr>
<tr>
<td>PMTK120</td>
<td>Erase aiding data stored in flash memory</td>
</tr>
<tr>
<td>PMTK127</td>
<td>Erase EPO data stored in flash memory</td>
</tr>
<tr>
<td>PMTK161,0</td>
<td>Standby - Stop mode</td>
</tr>
<tr>
<td>PMTK161,1</td>
<td>Standby - Sleep mode</td>
</tr>
<tr>
<td>PMTK251,Baudrate</td>
<td>Set NMEA Baudrate</td>
</tr>
<tr>
<td>PMTK313,0</td>
<td>Disable SBAS feature</td>
</tr>
<tr>
<td>PMTK313,1</td>
<td>Enable SBAS feature</td>
</tr>
<tr>
<td>PMTK333,1,0,0,0</td>
<td>Enable GPS only mode</td>
</tr>
<tr>
<td>PMTK333,0,1,0,0</td>
<td>Enable GLO only mode</td>
</tr>
<tr>
<td>PMTK333,0,0,0,1</td>
<td>Enable BDS only mode</td>
</tr>
<tr>
<td>PMTK333,1,1,0,0</td>
<td>Enable GPS and GLO mode</td>
</tr>
<tr>
<td>PMTK333,1,0,0,0,1</td>
<td>Enable GPS and BDS mode</td>
</tr>
</tbody>
</table>

TABLE 13—NMEA INPUT COMMANDS

21. FIRMWARE UPDATES

The FW stored in the internal Flash memory may be upgraded via the serial port TX/RX pads. In order to update the FW, the following steps should be performed to perform reprogramming:
1. Remove all power to the module.
2. Connect serial port to a PC.
3. Apply main power.
4. Run the software utility to re-flash the module. Clearing the entire flash memory is strongly recommended prior to programming.
5. Upon successful completion of re-flashing, remove main power to the module for a minimum of 10 seconds.
6. Apply main power to the module.
7. Verify the module has returned to the normal operating state.
22. HANDLING INFORMATION

22.1. MOISTURE SENSITIVITY
ORG1510 modules are MSL 3 designated devices according to IPC/JEDEC J-STD-033B standard. Module in sample or bulk package should be baked prior to assembly at 125°C for 48 hours.

22.2. ASSEMBLY
The module supports automatic pick-and-place assembly and reflow soldering processes. Suggested solder paste stencil is 5 mil to ensure sufficient solder volume.

22.3. SOLDERING
Reflow soldering of the module always on component side (Top side) of the host PCB according to standard IPC/JEDEC J-STD-020D for LGA SMD. Avoid exposure of ORG1510 to face-down reflow soldering process.

FIGURE 16 – RECOMMENDED SOLDERING PROFILE

Referred temperature is measured on top surface of the package during the entire soldering process. Suggested peak reflow temperature is 245°C for 30 sec. for Pb-Free solder paste. Actual board assembly reflow profile must be developed individually per furnace characteristics. Reflow furnace settings depend on the number of heating/cooling zones, type of solder paste/flux used, board design, component density and packages used.
22.4. CLEANING
If flux cleaning is required, module is capable to withstand standard cleaning process in vapor degreaser with the Solvon® n-Propyl Bromide (NPB) solvent and/or washing in DI water. Avoid cleaning process in ultrasonic degreaser, since specific vibrations may cause performance degradation or destruction of internal circuitry.

22.5. REWORK
If localized heating is required to rework or repair the module, precautionary methods are required to avoid exposure to solder reflow temperatures that can result in permanent damage to the device.

22.6. ESD SENSITIVITY
This product is ESD sensitive device and must be handled with care.

22.7. SAFETY INFORMATION
Improper handling and use can cause permanent damage to the product.

22.8. DISPOSAL INFORMATION
This product must not be treated as household waste.
For more detailed information about recycling electronic components contact your local waste management authority.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_C</td>
<td>Classification Temperature</td>
<td>245</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>T_P</td>
<td>Package Temperature</td>
<td>245</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>T_L</td>
<td>Liquidous Temperature</td>
<td>217</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>T_S</td>
<td>Soak/Preheat Temperature</td>
<td>150</td>
<td>200</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>t_S</td>
<td>Soak/Preheat Time</td>
<td>60</td>
<td>120</td>
<td></td>
<td>s</td>
</tr>
<tr>
<td>t_L</td>
<td>Liquidous Time</td>
<td>60</td>
<td>150</td>
<td></td>
<td>s</td>
</tr>
<tr>
<td>t_P</td>
<td>Peak Time</td>
<td>30</td>
<td></td>
<td></td>
<td>s</td>
</tr>
</tbody>
</table>

TABLE 14 – SOLDERING PROFILE PARAMETERS
23. COMPLIANCE

The following standards are applied on the production of ORG1510 modules:

- IPC-6011/6012 Class2 for PCB manufacturing
- IPC-A-600 Class2 for PCB inspection
- IPC-A-610D Class2 for SMT acceptability

ORG1510 modules are manufactured in ISO 9001:2008 accredited facilities.
ORG1510 modules are manufactured in ISO 14001:2004 accredited facilities.
ORG1510 modules are manufactured in OHSAS 18001:2007 accredited facilities.

ORG1510 modules are designed, manufactured and handled in compliance with the Directive 2011/65/EU of the European Parliament and of the Council of June 2011 on the Restriction of the use of certain Hazardous Substances in electrical and electronic equipment, referred as RoHS II.

ORG1510 modules are manufactured and handled in compliance with the applicable substance bans as of Annex XVII of Regulation 1907/2006/EC on Registration, Evaluation, Authorization and Restriction of Chemicals including all amendments and candidate list issued by ECHA, referred as REACH.

ORG1510 modules comply with the following EMC standards:

- EU CE EN55022:06+A1(07), Class B
- JAPAN VCCI V-3/2006.04

24. PACKAGING AND DELIVERY

24.1. APPEARANCE

ORG1510 modules are delivered in reeled tapes for automatic pick and place assembly process.

![FIGURE 17 – MODULE POSITION](image)

ORG1510 modules are packed in 2 different reel types.

<table>
<thead>
<tr>
<th>SUFFIX</th>
<th>TR1</th>
<th>TR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td>150</td>
<td>500</td>
</tr>
</tbody>
</table>

| TABLE 15 – REEL QUANTITY |
Reels are dry packed with humidity indicator card and desiccant bag according to IPC/JEDEC J-STD-033B standard for MSL 3 devices. Reels are vacuum sealed inside anti-static moisture barrier bags. Sealed reels are labeled with MSD sticker providing information about:
+ MSL
+ Shelf life
+ Reflow soldering peak temperature
+ Seal date

Sealed reels are packed inside cartons. Reels, reel packs and cartons are labeled with sticker providing information about:
+ Description
+ Part number
+ Lot number
+ Customer PO number
+ Quantity
+ Date code

24.2. CARRIER TAPE

Carrier tape material - polystyrene with carbon (PS+C). Cover tape material – polyester based film with heat activated adhesive coating layer.

![Carrier Tape Diagram](image)

FIGURE 18 – CARRIER TAPE

![Table 16 - Carrier Tape Dimensions](image)

<table>
<thead>
<tr>
<th></th>
<th>mm</th>
<th>inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₀</td>
<td>10.9 ± 0.1</td>
<td>0.429 ± 0.004</td>
</tr>
<tr>
<td>B₀</td>
<td>10.7 ± 0.1</td>
<td>0.421 ± 0.004</td>
</tr>
<tr>
<td>K₀</td>
<td>6.1 ± 0.1</td>
<td>0.240 ± 0.004</td>
</tr>
<tr>
<td>F</td>
<td>7.5 ± 0.1</td>
<td>0.295 ± 0.004</td>
</tr>
<tr>
<td>P₁</td>
<td>12.0 ± 0.1</td>
<td>0.472 ± 0.004</td>
</tr>
<tr>
<td>W</td>
<td>16.0 ± 0.3</td>
<td>0.630 ± 0.012</td>
</tr>
</tbody>
</table>

TABLE 16 – CARRIER TAPE DIMENSIONS
24.3. REEL

Reel material - antistatic plastic.

FIGURE 19 – REEL

<table>
<thead>
<tr>
<th>SUFFIX</th>
<th>TR1</th>
<th>TR2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>inch</td>
</tr>
<tr>
<td>ØA</td>
<td>178.0 ± 1.0</td>
<td>7.00 ± 0.04</td>
</tr>
<tr>
<td>ØN</td>
<td>60.0 ± 1.0</td>
<td>2.36 ± 0.04</td>
</tr>
<tr>
<td>W1</td>
<td>16.7 ± 0.5</td>
<td>0.66 ± 0.02</td>
</tr>
<tr>
<td>W2</td>
<td>19.8 ± 0.5</td>
<td>0.78 ± 0.02</td>
</tr>
</tbody>
</table>

TABLE 17 – REEL DIMENSIONS

25. ORDERING INFORMATION

![Ordering Options Diagram]

The default constellation is GPS and GLONASS. GPS and BEIDOU constellation is also available. For ordering this option contact marketing@origingps.com
APPENDIX 1 – MULTI MICRO HORNET ORG1510-MK05

The Org1510-MK05 version has the same features set as the ORG1510-MK04, the only difference is that it has an option to connect a coin battery (for example ECR2025 coin battery) to provide power in backup mode. Minimum voltage that the backup battery will support is 2.8V.

With a battery connection, after waking up, the receiver uses:
1. All internal aiding, including RTC time, Ephemeris, and Last Position, resulting in the fastest possible TTFF in either hot or warm start modes.
2. Configuration settings stored in flash after turning power off.

To keep alive the RTC time, the following circuit implementation using a 3V coin battery, can be used.

![FIGURE 21 – BATTERY BACKUP IMPLEMENTATION](image)

If a battery is not connected to pad 8, connection between pads 8 and 4 is very recommended in order to back up the flash.

Since Pin 8 at the ORG1510 MK04 is used for reset, at the ORG1510 MK05 reset is only valid in s/w command $PMTK 104 (and the reset type).