

MC33771C

Battery cell controller IC

Rev. 7.0 — 16 July 2024

Product data sheet

1 General description

The MC33771C is a SMARTMOS lithium-ion battery cell controller IC designed for automotive applications, such as hybrid electric (HEV) and electric vehicles (EV) along with industrial applications, such as energy storage systems (ESS) and uninterruptible power supply (UPS) systems.

The device performs ADC conversions of the differential cell voltages and current, as well as battery coulomb counting and battery temperature measurements. The information is transmitted to MCU using one of the microcontroller interfaces (Serial Peripheral Interface (SPI) or Transformer physical layer (TPL)) of the IC.

2 Features

- $9.6 \text{ V} \leq V_{\text{PWR}} \leq 63 \text{ V}$ operation, 75 V transient
- 7 to 14 cells management
- Isolated 2.0 Mbps differential communication or 4.0 Mbps SPI
- Addressable on initialization
- Bi-directional transceiver to support up to 63 nodes in daisy chain
- 0.8 mV maximum total voltage measurement error
- Synchronized cell voltage/current measurement with coulomb count
- Averaging of cell voltage measurements
- Total stack voltage measurement
- Seven GPIO/temperature sensor inputs
- 5.0 V at 5.0 mA reference supply output
- Automatic over/undervoltage and temperature detection routable to fault pin
- Integrated sleep mode over/undervoltage and temperature monitoring
- Onboard 300 mA passive cell balancing with diagnostics
- Hot plug capable
- Detection of internal and external faults, as open lines, shorts, and leakages
- Designed to support ISO 26262, up to ASIL D safety system.
- Qualified in compliance with AECQ-100

3 Simplified application diagram

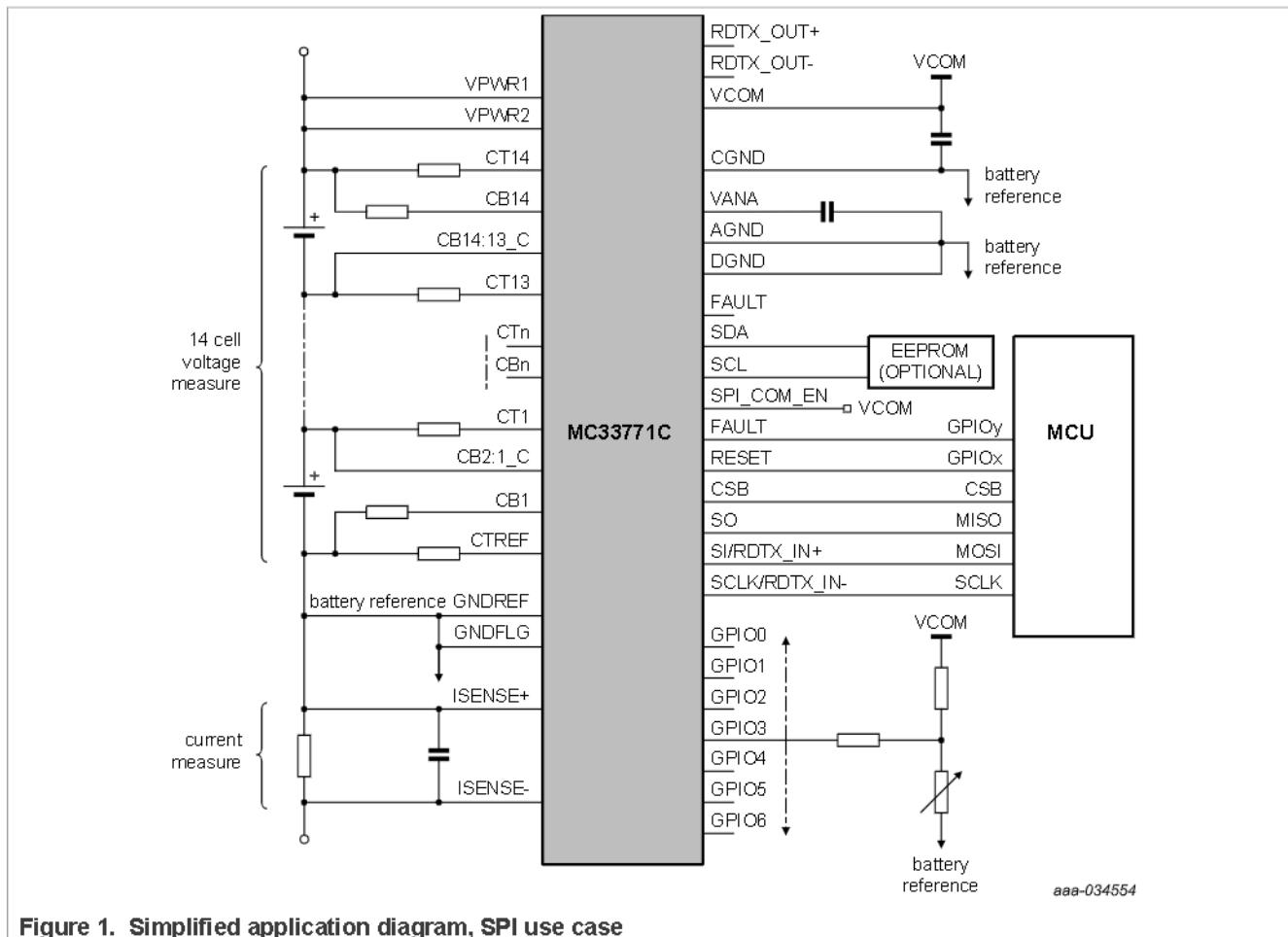


Figure 1. Simplified application diagram, SPI use case

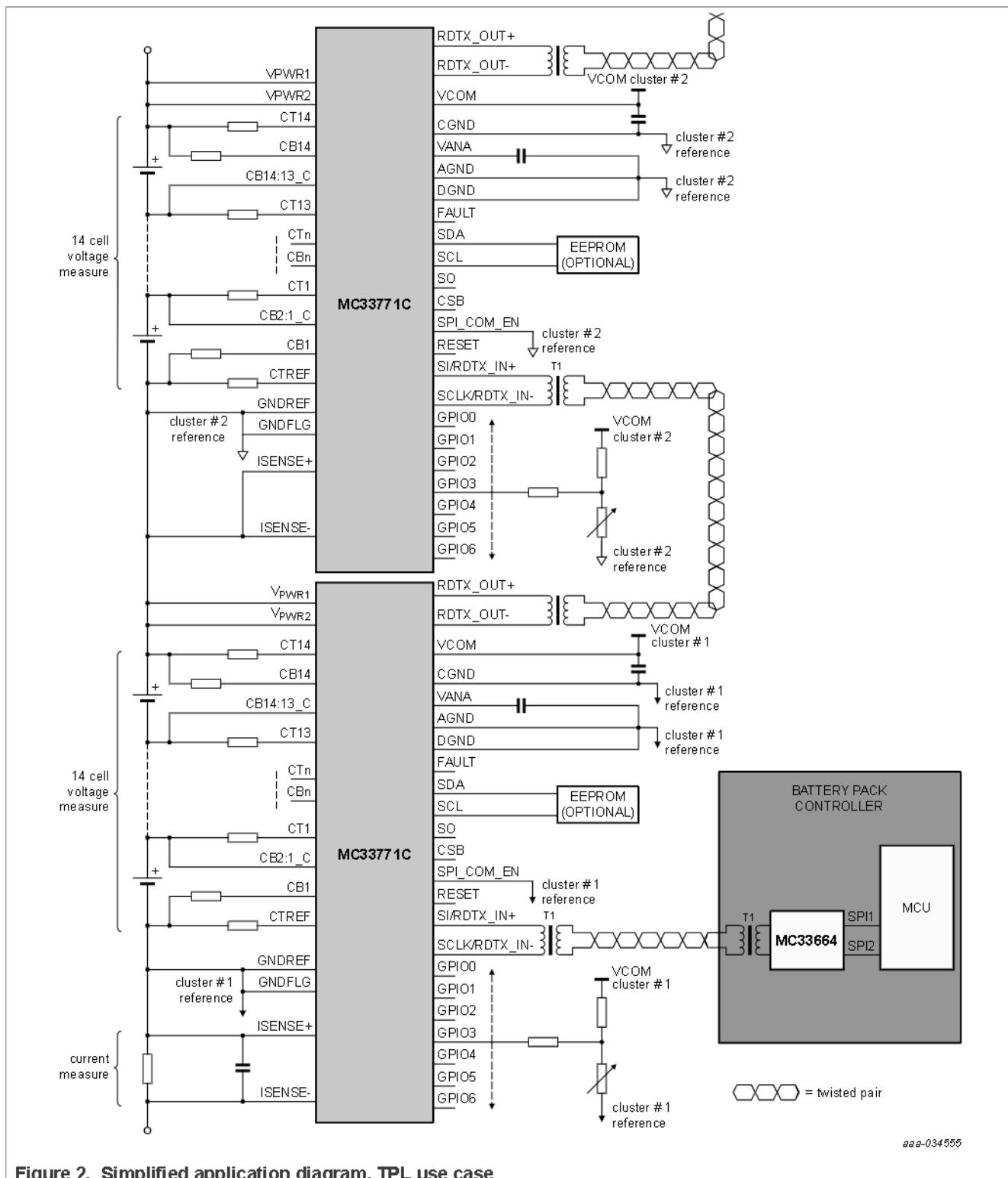


Figure 2. Simplified application diagram, TPL use case

4 Applications

- Automotive: 48 V and high-voltage battery packs

- E-bikes, e-scooters
- Energy storage systems
- Uninterruptible power supply (UPS)

5 Ordering information

5.1 Part numbers definition

MC33771C T/y z AE/R2

Table 1. Part number breakdown

Code	Option	Description
y	T	TPL communication type
	P	y = P (Premium with current measurement option)
	A	y = A (Advanced)
z	1	z = 1 (7 to 14 channels)
	2	z = 2 (7 to 8 channels)
	AE	Package suffix
	R2	Tape and reel indicator

5.2 Part numbers list

This section describes the part numbers available to be purchased along with their differences. Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to <http://www.nxp.com>.

Table 2. Advanced orderable part table

Temperature range is -40 to 105 °C

Package type is 64-pin LQFP-EP

Orderable part	Number of channels	OV/UV	Precision GPIO as temperature channels and OT/UT	Current channel or coulomb count
TPL differential communication protocol				
MC33771CTA1AE	7 to 14	Yes	Yes	No
MC33771CTA2AE	7 to 8	Yes	Yes	No

Table 3. Premium orderable part table

Temperature range is -40 to 105 °C

Package type is 64-pin LQFP-EP

Orderable part	Number of channels	OV/UV	Precision GPIO as temperature channels and OT/UT	Current channel or coulomb count
TPL differential communication protocol with current measurement option				
MC33771CTP1AE	7 to 14	Yes	Yes	Yes
MC33771CTP2AE	7 to 8	Yes	Yes	Yes

6 Internal block diagram

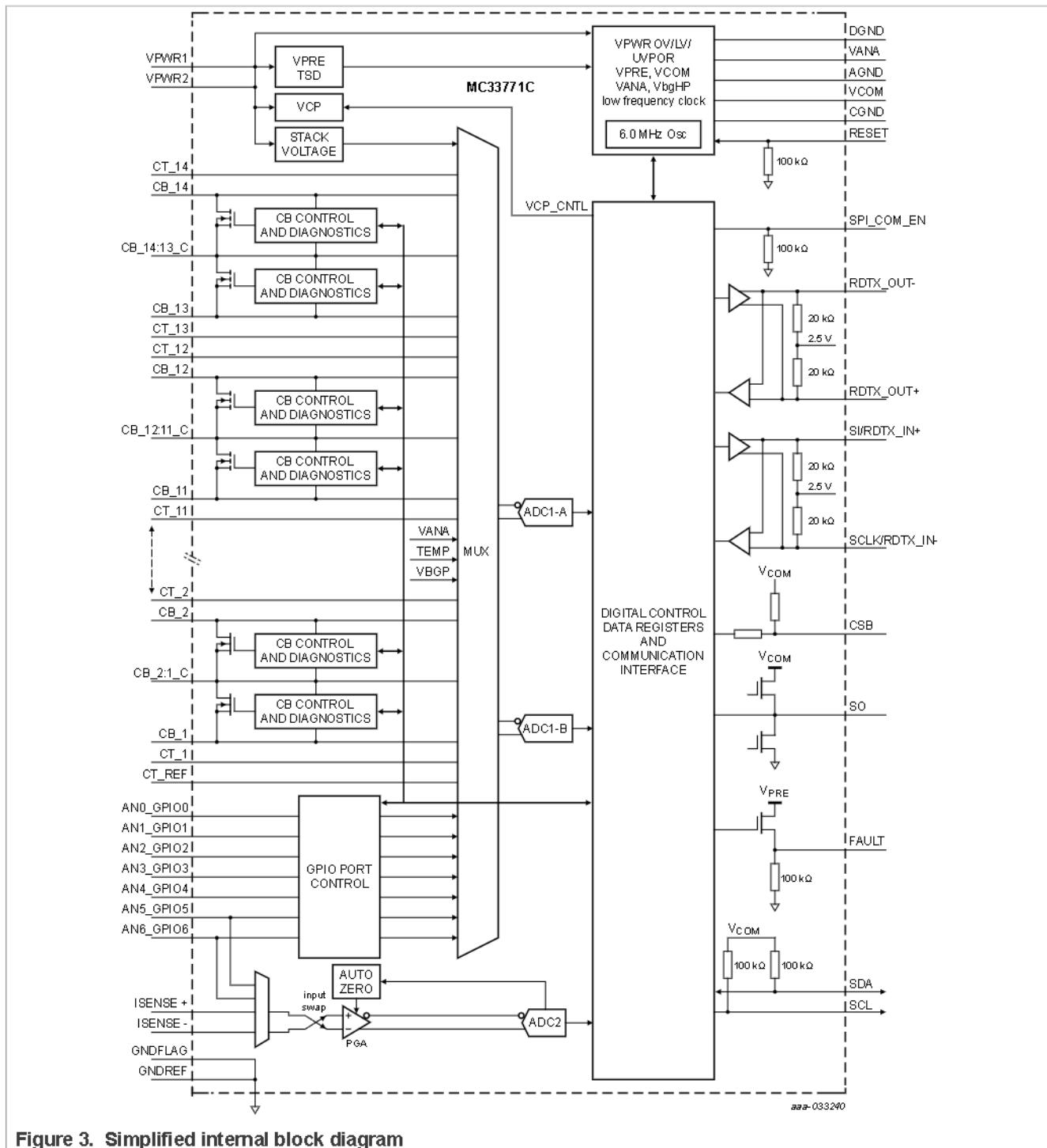


Figure 3. Simplified internal block diagram

7 Pinning information

7.1 Pinout diagram

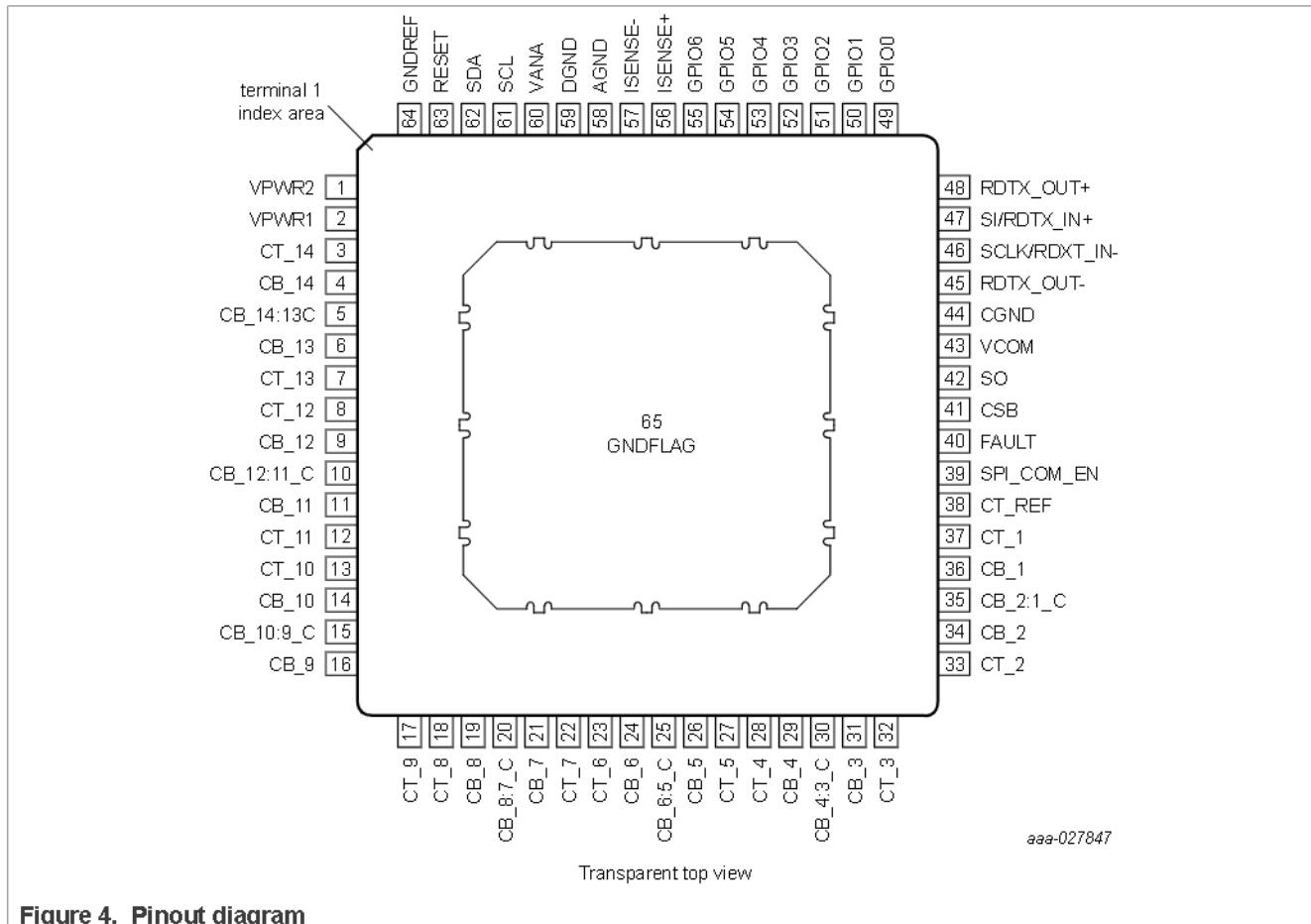


Figure 4. Pinout diagram

7.2 Pin definitions

Table 4. Pin definitions

Number	Name	Function	Definition
1	VPWR2	Input	Power input to the MC33771C
2	VPWR1	Input	Power input to the MC33771C
3	CT_14	Input	Cell pin 14 input. Terminate to LPF resistor.
4	CB_14	Output	Cell balance driver. Terminate to cell 14 cell balance load resistor.
5	CB_14:13_C	Output	Cell balance 14:13 common. Terminate to CB_14:13_C balance load resistor.
6	CB_13	Output	Cell balance driver. Terminate to cell 13 cell balance load resistor.
7	CT_13	Input	Cell pin 13 input. Terminate to LPF resistor.
8	CT_12	Input	Cell pin 12 input. Terminate to LPF resistor.

Table 4. Pin definitions...continued

Number	Name	Function	Definition
9	CB_12	Output	Cell balance driver. Terminate to cell 12 cell balance load resistor.
10	CB_12:11_C	Output	Cell balance 12:11 common. Terminate to CB_12:11_C balance load resistor.
11	CB_11	Output	Cell balance driver. Terminate to cell 11 cell balance load resistor.
12	CT_11	Input	Cell pin 11 input. Terminate to LPF resistor.
13	CT_10	Input	Cell pin 10 input. Terminate to LPF resistor.
14	CB_10	Output	Cell balance driver. Terminate to cell 10 cell balance load resistor.
15	CB_10:9_C	Output	Cell balance 10:9 common. Terminate to CB_10:9_C balance load resistor.
16	CB_9	Output	Cell balance driver. Terminate to cell 9 cell balance load resistor.
17	CT_9	Input	Cell pin 9 input. Terminate to LPF resistor.
18	CT_8	Input	Cell pin 8 input. Terminate to LPF resistor.
19	CB_8	Output	Cell balance driver. Terminate to cell 8 cell balance load resistor.
20	CB_8:7_C	Output	Cell balance 8:7 common. Terminate to CB_8:7_C balance load resistor.
21	CB_7	Output	Cell balance driver. Terminate to cell 7 cell balance load resistor.
22	CT_7	Input	Cell pin 7 input. Terminate to LPF resistor.
23	CT_6	Input	Cell pin 6 input. Terminate to LPF resistor.
24	CB_6	Output	Cell balance driver. Terminate to cell 6 cell balance load resistor.
25	CB_6:5_C	Output	Cell balance 6:5 common. Terminate to CB_6:5_C balance load resistor.
26	CB_5	Output	Cell balance driver. Terminate to cell 5 cell balance load resistor.
27	CT_5	Input	Cell pin 5 input. Terminate to LPF resistor.
28	CT_4	Input	Cell pin 4 input. Terminate to LPF resistor.
29	CB_4	Output	Cell balance driver. Terminate to cell 4 cell balance load resistor.
30	CB_4:3_C	Output	Cell balance 4:3 common. Terminate to CB_4:3_C balance load resistor.
31	CB_3	Output	Cell balance driver. Terminate to cell 3 cell balance load resistor.
32	CT_3	Input	Cell pin 3 input. Terminate to LPF resistor.
33	CT_2	Input	Cell pin 2 input. Terminate to LPF resistor.
34	CB_2	Output	Cell balance driver. Terminate to cell 2 cell balance load resistor.

Table 4. Pin definitions...continued

Number	Name	Function	Definition
35	CB_2:1_C	Output	Cell Balance 2:1 common. Terminate to CB_2:1_C balance load resistor.
36	CB_1	Output	Cell balance driver. Terminate to cell 1 cell balance load resistor.
37	CT_1	Input	Cell pin 1 input. Terminate to LPF resistor.
38	CT_REF	Input	Cell pin REF input. Terminate to LPF resistor.
39	SPI_COM_EN	Input	SPI communication enable. Pin must be high for the SPI to be active.
40	FAULT	Output	Fault output dependent on user defined internal or external faults. If not used, it must be left open.
41	CSB	Input	SPI chip select
42	SO	Output	SPI serial output
43	VCOM	Output	Communication regulator output
44	CGND	Ground	Communication decoupling ground. Terminate to GNDREF.
45	RDTX_OUT-	I/O	Receive/transmit output negative
46	SCLK/RDTX_IN-	I/O	SPI clock or receive/transmit input negative
47	SI/RDTX_IN+	I/O	SPI serial input or receive/transmit input positive
48	RDTX_OUT+	I/O	Receive/transmit output positive
49	GPIO0	I/O	General purpose analog input or GPIO or wake-up or fault daisy chain
50	GPIO1	I/O	General purpose analog input or GPIO
51	GPIO2	I/O	General purpose analog input or GPIO or conversion trigger
52	GPIO3	I/O	General purpose analog input or GPIO
53	GPIO4	I/O	General purpose analog input or GPIO
54	GPIO5	I/O	General purpose analog input or GPIO
55	GPIO6	I/O	General purpose analog input or GPIO
56	ISENSE+	Input	Current measurement input+
57	ISENSE-	Input	Current measurement input-
58	AGND	Ground	Analog ground, terminate to GNDREF
59	DGND	Ground	Digital ground, terminate to GNDREF
60	VANA	Output	Precision ADC analog supply
61	SCL	I/O	I ² C clock
62	SDA	I/O	I ² C data
63	RESET	Input	RESET is an active high input. RESET has an internal pull down. If not used, it can be tied to GND.
64	GNDREF	Ground	Ground reference for device. Terminate to reference of battery cluster.

Table 4. Pin definitions...continued

Number	Name	Function	Definition
65	GNDFLAG	Ground	Device flag. Terminate to lowest potential of battery cluster.

8 General product characteristics

8.1 Ratings and operating requirements relationship

The operating voltage range pertains to the VPWR pins referenced to the AGND pins.

Table 5. Ratings vs. operating requirements

Fatal range • Permanent failure might occur	Handling range – no permanent failure			Fatal range • Permanent failure might occur
	Lower limited operating range • No permanent failure, but IC functionality is not guaranteed	Normal operating range • 100 % functional	Upper limited operating range • IC parameters might be out of specification • Detection of VPWR overvoltage is functional	
VPWR < -0.3 V	7.6 V ≤ VPWR < 9.6 V Reset range: -0.3 V ≤ VPWR < 7.6 V	9.6 V ≤ VPWR ≤ 63 V	63 V < VPWR ≤ 75 V	75 V < VPWR

In both upper and lower limited operating range, no information can be provided about IC performance. Only the detection of VPWR overvoltage is guaranteed in the upper limited operating range.

Performance in normal operating range is guaranteed only if there is a minimum of seven battery cells in the stack.

8.2 Maximum ratings

Table 6. Maximum ratings

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Symbol	Description (rating)	Min	Max	Unit	
Electrical ratings					
VPWR1, VPWR2	Supply input voltage	-0.3	75	V	
CT14	Cell terminal voltage	-0.3	75	V	
VPWR to CT14	Voltage across VPWR1,2 pins pair and CT14 pin	-10	10.5	V	
CT _N to CT _{N-1}	Cell terminal differential voltage	[1]	-0.3	6.0	V
CT _{REF} to GND	Cell terminal reference to ground	—	5	V	
CT _N to GND	Cell terminal voltage to ground (N=1 to 4 or N=6 to 14)	—	(N+1) * 5	V	
	Cell terminal voltage to ground (N=5)	—	27.5	V	
CT _N (CURRENT)	Cell terminal input current	—	±500	µA	
CB _N to CB _{N:N-1_C} CB _{N:N-1_C} to CB _{N-1}	Cell balance differential voltage	—	10	V	
CB _{2n} to GND	Cell balance voltage to GND (n=1 to 7)	—	(2n+1) . 5	V	
CB _{2n+1} to GND	Cell balance voltage to GND (n=0 to 6)	—	(2n+1) . 5	V	

Table 6. Maximum ratings...continued

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Symbol	Description (rating)	Min	Max	Unit
CB _{2n:2n-1_C} to GND	Cell balance voltage to GND (n=1 to 6)	—	2n . 5	V
CB _{N:N-1_C} to CT _{n-1}	Cell balance input to cell terminal input	-10	10	V
VISENSE	ISENSE+ and ISENSE- pin voltage	-0.3	2.5	V
VCOM	Maximum voltage may be applied to VCOM pin from external source	—	5.8	V
VANA	Maximum voltage may be applied to VANA pin	—	3.1	V
V _{GPIO0}	GPIO0 pin voltage	-0.3	6.5	V
V _{GPIOx}	GPIOx pins (x = 1 to 6) voltage	-0.3	VCOM + 0.5	V
V _{DIG}	Voltage I ² C pins (SDA, SCL)	-0.3	VCOM + 0.5	V
V _{RESET}	RESET pin	-0.3	6.5	V
V _{CSB}	CSB pin	-0.3	6.5	V
V _{SPI_COMM_EN}	SPI_COMM_EN	-0.3	6.5	V
V _{SO}	SO pin	-0.3	VCOM + 0.5	V
V _{GPIO5,6}	Maximum voltage for GPIO5 and GPIO6 pins used as current input	-0.3	2.5	V
FAULT	Maximum applied voltage to pin	-0.3	7.0	V
I _{pin_unpowered}	Input current in a pin when the device is unpowered	-2	2	mA
V _{COMM}	Maximum voltage to pins RDTX_OUT+, RDTX_OUT-, SI/RDTX_IN+, SCLK/RDTX_IN-	-10.0	10.0	V
V _{ESD1}	ESD voltage Human body model (HBM) Charge device model (CDM) Charge device model corner pins (CDM)	— — —	±2000 ±500 ^[2] ±750	V
V _{ESD2}	ESD voltage (VPWR1, VPWR2, CTx, CBx, GPIOx, ISENSE+, ISENSE-, RDTX_OUT+, RDTX_OUT-, SI/RDTX_IN+, SCLK/RDTX_IN-) versus all ground pins Human body model (HBM)	[3]	±4000	V
V _{ESD3}	ESD voltage (CTREF, CTx, CBx, GPIOx, ISENSE+, ISENSE-, RDTX_OUT+, RDTX_OUT-, SI/RDTX_IN+, SCLK/RDTX_IN-) IEC 61000-4-2, Unpowered (Gun configuration: 330Ω / 150pF) HMM, Unpowered (Gun configuration: 330Ω / 150pF) ISO 10605:2009, Unpowered (Gun configuration: 2 kΩ / 150pF) ISO 10605:2009, Powered (Gun configuration: 2 kΩ / 150pF)	[4]	±8000 ±8000 ±8000 ±8000	V

[1] Adjacent CT pins may experience an overvoltage that exceeds their maximum rating during OV/UV functional verification test or during open line diagnostic test. Nevertheless, the IC is completely tolerant to this special situation.

[2] For CT_REF pin applicable limit is ±450 V.

[3] ESD testing is performed in accordance with the human body model (HBM) ($C_{ZAP} = 100 \text{ pF}$, $R_{ZAP} = 1500 \Omega$), and the charge device model (CDM) ($C_{ZAP} = 4.0 \text{ pF}$).

[4] These voltage values can be sustained only if ESD caps are used as described in [Section 13.2](#).

8.3 Thermal characteristics

Table 7. Thermal ratings

All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

Symbol	Description (rating)	Min	Max	Unit
Thermal ratings				
T_A	Operating temperature Ambient	-40	+105	°C
T_J	Junction ^[1]	-40	+150	
T_{STG}	Storage temperature	-55	+150	°C
T_{PPRT}	Peak package reflow temperature	^[2] ^[3] —	260	°C
Thermal resistance and package dissipation ratings				
$R_{\Theta JB}$	Junction-to-board (bottom exposed pad soldered to board) 64 LQFP EP	^[4] —	10	°C/W
$R_{\Theta JA}$	Junction-to-ambient, natural convection, single-layer board (1s) 64 LQFP EP	^[5] ^[6] —	59	°C/W
$R_{\Theta JA}$	Junction-to-ambient, natural convection, four-layer board (2s2p) 64 LQFP EP	^[5] ^[6] —	27	°C/W
$R_{\Theta JCTOP}$	Junction-to-case top (exposed pad) 64 LQFP EP	^[7] —	14	°C/W
$R_{\Theta JCBOTTOM}$	Junction-to-case bottom (exposed pad) 64 LQFP EP	^[8] —	0.97	°C/W
Ψ_{JT}	Junction to package top, natural convection	^[9] —	3	°C/W

[1] The user must ensure that the average maximum operating junction temperature (T_J) is not exceeded.

[2] Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a malfunction or permanent damage to the device.

[3] NXP's Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all orderable parts and review parametrics.

[4] Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

[5] Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

[6] Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.

[7] Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1), with the cold plate temperature used for the case temperature.

[8] Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance.

[9] Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2.

8.4 Electrical characteristics

Table 8. Static and dynamic electrical characteristics

Characteristics noted under conditions 9.6 V $\leq V_{PWR} \leq$ 63 V, -40 °C $\leq T_A \leq$ 105 °C, GND = 0 V, unless otherwise stated. Typical values refer to $V_{PWR} = 56$ V, $T_A = 25$ °C, unless otherwise noted.

Symbol	Parameter	Min	Typ	Max	Unit
Power management					
$V_{PWR(FO)}$	Supply voltage Full parameter specification	9.6	—	63	V
I_{VPOWER}	Supply current (base value) Normal mode, cell balance OFF, ADC inactive, SPI communication inactive, IVCOM = 0 mA	—	5.4	8.5	mA

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions $9.6 \text{ V} \leq V_{PWR} \leq 63 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$, $GND = 0 \text{ V}$, unless otherwise stated. Typical values refer to $V_{PWR} = 56 \text{ V}$, $T_A = 25^\circ\text{C}$, unless otherwise noted.

Symbol	Parameter	Min	Typ	Max	Unit
	Normal mode, cell balance OFF, ADC inactive, TPL communication inactive, $IVCOM = 0 \text{ mA}$	—	8.0	10.0	
$I_{VPOWER(TPL_TX)}$	Supply current adder when TPL communication active	—	—	16	mA
$I_{VPOWER(CBON)}$	Supply current adder to set all 14 cell balance switches ON	—	0.97	—	mA
$I_{VPOWER(ADC)}$	Delta supply current to perform ADC conversions (addend) ADC1-A,B continuously converting ADC2 continuously converting	[1]	3.0 1.4	5.0 2.0	mA
$I_{VPOWER(SS)}$	Supply current in sleep mode and in idle mode, communication inactive, cell balance off, cyclic measurement off, oscillator monitor on SPI mode (25°C) SPI mode (-40°C to 60°C) SPI mode (105°C) TPL mode ($T_A = 25^\circ\text{C}$) TPL mode ($T_A = -40^\circ\text{C}$ to 60°C) TPL mode ($T_A = 105^\circ\text{C}$)	[2]	40 — — 64 54 76	— 75 100 — 108 115 138	μA
$I_{VPOWER(CKMON)}$	Clock monitor current consumption	—	5	8	μA
V_{VPOWER_CT}	Voltage drop across CT14 and V_{PWR} without accuracy degradation $3.0 \text{ V} \leq V_{CELL}$ $2.5 \text{ V} \leq V_{CELL} < 3.0 \text{ V}$ $V_{CELL} < 2.5 \text{ V}$	[3]	-3.0 -2.0 -1.5	3.0 2.0 1.5	V
$V_{PWR(OV_FLAG)}$	V_{PWR} overvoltage fault threshold (flag)	63 —	65	68	V
$V_{PWR(LV_FLAG)}$	V_{PWR} low-voltage warning threshold (flag)	11.7 —	12	12.3	V
$V_{PWR(UV_POR)}$	V_{PWR} undervoltage shutdown threshold (POR)	7.6 —	8.5	9.6	V
$V_{PWR(HYS)}$	V_{PWR} UV hysteresis voltage	100 —	200	—	mV
$t_{VPOWER(FILTER)}$	V_{PWR} OV, LV filter	—	50	—	μs
VCOM power supply					
V_{COM}	VCOM output voltage	4.9 —	5.0	5.2	V
I_{COM}	VCOM output current allocated for external use	—	—	5.0	mA
$V_{COM(UV)}$	VCOM undervoltage fault threshold	4.2 —	4.4	4.6	V
V_{COM_HYS}	VCOM undervoltage hysteresis	—	100	—	mV
$t_{VCOMFLT_TIMER}$	VCOM undervoltage fault timer	—	10	—	μs
$t_{VCOMRETRY}$	VCOM fault retry timer	—	10	—	ms
$V_{COM(OV)}$	VCOM overvoltage fault threshold	5.4	—	5.9	V

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions $9.6 \text{ V} \leq V_{PWR} \leq 63 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$, $GND = 0 \text{ V}$, unless otherwise stated. Typical values refer to $V_{PWR} = 56 \text{ V}$, $T_A = 25^\circ\text{C}$, unless otherwise noted.

Symbol	Parameter	Min	Typ	Max	Unit
$I_{LIM_VCOM(OC)}$	VCOM current limit	65	—	140	mA
$R_{VCOM(SS)}$	VCOM sleep mode pull-down resistor	1.0 —	2.0	5.0 —	kΩ
t_{VCOM}	VCOM rise time (for $V_{PWR} > 10\text{V}$ and $CL = 2.2 \mu\text{F}$ (ceramic X7R only) in parallel with 220 pF)	[4] —	—	440	μs
VANA power supply					
V_{ANA}	VANA output voltage (not used by external circuits) Decouple with 47 nF X7R 0603 or 0402	2.6 —	2.65	2.7 —	V
$V_{ANA(UV)}$	VANA undervoltage fault threshold	2.28 —	2.4	2.5 —	V
V_{ANA_HYS}	VANA undervoltage hysteresis	—	50	—	mV
$V_{ANA(FLT_TIMER)}$	VANA undervoltage fault timer	—	11	—	μs
$V_{ANA(OV)}$	VANA overvoltage fault threshold	2.77 —	2.8	2.85 —	V
$t_{VANA(TRY)}$	VANA fault retry timer	—	10	—	ms
$I_{LIM_VANA(OC)}$	VANA current limit	5.0	—	10	mA
R_{VANA_RPD}	VANA sleep mode pull-down resistor	—	1.0	—	kΩ
t_{VANA}	VANA rise time ($CL = 47 \text{ nF}$ ceramic X7R only)	[4] —	—	400	μs
ADC1-A, ADC1-B					
$CT_n(\text{LEAKAGE})$	Cell terminal input leakage current (except in SLEEP mode when cell balancing is ON)	—	10	100 —	nA
$CT_n(F_V)$	Cell terminal input current - functional verification	—	0.365	0.5 —	mA
CT_N	Cell terminal input current during conversion	—	50	—	nA
R_{PD}	Cell terminal open load detection pull-down resistor	850 —	950	1250 —	Ω
V_{VPWR_RES}	VPWR terminal measurement resolution	—	2.44141	—	mV/LSB
V_{VPWR_RNG}	VPWR terminal measurement range	9.6	—	75	V
$V_{VPWR_TERM_ERR}$	VPWR terminal measurement accuracy	—0.5	—	0.5	%
V_{CT_RNG}	ADC differential input voltage range for CT_n to CT_{n-1}	[5] 0.0	—	4.85	V
$V_{CT_ANx_RES}$	Cell voltage and AN_x resolution in 15-bit $MEAS_{xxxx}$ registers	—	152.58789	—	μV/LSB
$V_{ANx_RATIO_RES}$	AN_x resolution in 15-bit $MEAS_{xxxx}$ registers in ratiometric mode	—	VCOM. (30.51758)	—	μV/LSB
$V_{ERR33RT}$	Cell voltage measurement error $V_{CELL} = 3.3 \text{ V}$, $T_A = 25^\circ\text{C}$	[6] [7] —0.8	±0.4	0.8	mV
V_{ERR}	Cell voltage measurement error $0.1 \text{ V} \leq V_{CELL} \leq 4.8 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$ (or $-40^\circ\text{C} \leq T_J \leq 125^\circ\text{C}$)	[6] [7] [8] —5.5	±0.7	5.5 —	mV
V_{ERR_1}	Cell voltage measurement error $0 \text{ V} \leq V_{CELL} \leq 1.5 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 60^\circ\text{C}$ (or $-40^\circ\text{C} \leq T_J \leq 85^\circ\text{C}$)	[6] [8] [7] —1.5	±0.4	1.5 —	mV

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions $9.6 \text{ V} \leq V_{PWR} \leq 63 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$, $GND = 0 \text{ V}$, unless otherwise stated. Typical values refer to $V_{PWR} = 56 \text{ V}$, $T_A = 25^\circ\text{C}$, unless otherwise noted.

Symbol	Parameter		Min	Typ	Max	Unit
V_{ERR_2}	Cell voltage measurement error $1.5 \text{ V} \leq V_{CELL} \leq 2.7 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 60^\circ\text{C}$ (or $-40^\circ\text{C} \leq T_J \leq 85^\circ\text{C}$)	[6] [7]	-2.0 —	± 0.4	2.0 —	mV
V_{ERR_3}	Cell voltage measurement error $2.7 \text{ V} \leq V_{CELL} \leq 3.7 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 60^\circ\text{C}$ (or $-40^\circ\text{C} \leq T_J \leq 85^\circ\text{C}$)	[6] [7]	-2.0 —	± 0.5	2.0 —	mV
V_{ERR_4}	Cell voltage measurement error $3.7 \text{ V} \leq V_{CELL} \leq 4.3 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 60^\circ\text{C}$ (or $-40^\circ\text{C} \leq T_J \leq 85^\circ\text{C}$)	[6] [7]	-2.8 —	± 0.7	2.8 —	mV
V_{ERR_5}	Cell voltage measurement error $1.5 \text{ V} \leq V_{CELL} \leq 4.5 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$ (or $-40^\circ\text{C} \leq T_J \leq 125^\circ\text{C}$)	[6] [7]	-4.5 —	± 0.7	4.5 —	mV
$V_{ERR33RTA}$	Cell voltage measurement error after aging, $V_{CELL} = 3.3 \text{ V}$, $T_A = 25^\circ\text{C}$	[6] [9]	-1.5 —	± 0.5	1.5 —	mV
V_{ERR_A}	Cell voltage measurement error after aging, $0.1 \text{ V} \leq V_{CELL} \leq 4.8 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$ (or $-40^\circ\text{C} \leq T_J \leq 125^\circ\text{C}$)	[6] [8] [9]	-8.0 —	± 0.8	8.0 —	mV
V_{ERR_1A}	Cell voltage measurement error after aging, $0 \text{ V} \leq V_{CELL} \leq 1.5 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 60^\circ\text{C}$ (or $-40^\circ\text{C} \leq T_J \leq 85^\circ\text{C}$)	[6] [8] [9]	-2.0 —	± 0.5	2.0 —	mV
V_{ERR_2A}	Cell voltage measurement error after aging, $1.5 \text{ V} \leq V_{CELL} \leq 2.7 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 60^\circ\text{C}$ (or $-40^\circ\text{C} \leq T_J \leq 85^\circ\text{C}$)	[6] [9]	-2.5 —	± 0.5	2.5 —	mV
V_{ERR_3A}	Cell voltage measurement error after aging, $2.7 \text{ V} \leq V_{CELL} \leq 3.7 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 60^\circ\text{C}$ (or $-40^\circ\text{C} \leq T_J \leq 85^\circ\text{C}$)	[6] [9]	-3.2 —	± 0.4	3.2 —	mV
V_{ERR_4A}	Cell voltage measurement error after aging, $3.7 \text{ V} \leq V_{CELL} \leq 4.3 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 60^\circ\text{C}$ (or $-40^\circ\text{C} \leq T_J \leq 85^\circ\text{C}$)	[6] [9]	-3.9 —	± 0.7	3.9 —	mV
V_{ERR_5A}	Cell voltage measurement error after aging, $1.5 \text{ V} \leq V_{CELL} \leq 4.5 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$ (or $-40^\circ\text{C} \leq T_J \leq 125^\circ\text{C}$)	[6] [9]	-6.0 —	± 0.7	6.0 —	mV
V_{ANx_ERR}	Magnitude of ANx error in the entire measurement range: Ratiometric measurement Absolute measurement after soldering and aging, input in the range $[1.0, 4.5] \text{ V}$ Absolute measurement after soldering and aging, input in the range $[0, 4.85] \text{ V}$, for $-40^\circ\text{C} < T_A < 60^\circ\text{C}$ Absolute measurement after soldering and aging, input in the range $[0, 4.85] \text{ V}$, for $-40^\circ\text{C} < T_A < 105^\circ\text{C}$	[6] [9]	— — — —	— — — —	16 10 8.0 11	mV
t_{VCONV}	Single channel net conversion time 13-bit resolution 14-bit resolution 15-bit resolution 16-bit resolution		— — — —	6.77 9.43 14.75 25.36	— — — —	μs
V_{V_NOISE}	Conversion noise 13-bit resolution 14-bit resolution		— —	1800 1000	— —	μVRms

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions $9.6 \text{ V} \leq V_{PWR} \leq 63 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$, $GND = 0 \text{ V}$, unless otherwise stated. Typical values refer to $V_{PWR} = 56 \text{ V}$, $T_A = 25^\circ\text{C}$, unless otherwise noted.

Symbol	Parameter	Min	Typ	Max	Unit
	15-bit resolution	—	600	—	
	16-bit resolution	—	400	—	
ADC2/current sense module					
V_{INC}	I_{SENSE+}/I_{SENSE-} – input voltage (reference to AGND)	-300	—	300	mV
V_{IND}	I_{SENSE+}/I_{SENSE-} – differential input voltage range	-150	—	150	mV
$V_{ISENSEX(OFFSET)}$	I_{SENSE+}/I_{SENSE-} – input voltage offset error	[10]	—	0.5	μV
$I_{SENSEX(BIAS)}$	I_{SENSE+}/I_{SENSE-} – input bias current	-100	—	100	nA
$I_{SENSE(DIF)}$	I_{SENSE+}/I_{SENSE-} – differential input bias current	-5.0	—	5.0	nA
$I_{GAINERR}$	I_{SENSE} error including nonlinearities	-0.5	—	%	
I_{ISENSE_OL}	I_{SENSE} open load injected current	109	130	151	μA
V_{ISENSE_OL}	I_{SENSE} open load detection threshold	340	460	600	mV
V_{2RES}	Current sense user register resolution	—	0.6	—	$\mu\text{V}/\text{LSB}$
V_{PGA_SAT}	PGA saturation half-range Gain = 256 Gain = 64 Gain = 16 Gain = 4	—	4.9	—	mV
V_{PGA_ITH}	Voltage threshold for PGA gain increase Gain = 256 Gain = 64 Gain = 16 Gain = 4	—	—	—	mV
V_{PGA_DTH}	Voltage threshold for PGA gain decrease Gain = 256 Gain = 64 Gain = 16 Gain = 4	—	4.298	—	mV
t_{AZC_SETTLE}	Time to perform auto-zero procedure after enabling the current channel	—	200	—	μs
t_{ICONV}	ADC conversion time including PGA settling time 13 bit resolution 14 bit resolution 15 bit resolution 16 bit resolution	—	19.00	—	μs
V_{I_NOISE}	Noise error at 16-bit conversion	[10]	3.01	—	μVrms
V_{I_NOISE}	Noise error at 13-bit conversion		8.33	—	μVrms
ADC_{CLK}	ADC2 and ADC1-A,B clocking frequency	5.7	6.0	6.3	MHz
Diagnostic thresholds					
V_{OL_DETECT}	Cell terminal open load V detection threshold $1.5 \text{ V} \leq V_{CELL} \leq 2.7 \text{ V}$ $2.5 \text{ V} \leq V_{CELL} \leq 3.7 \text{ V}$ $2.5 \text{ V} \leq V_{CELL} \leq 4.3 \text{ V}$	[13]	50	—	mV
			100	—	
			150	—	

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions $9.6 \text{ V} \leq V_{PWR} \leq 63 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$, $GND = 0 \text{ V}$, unless otherwise stated. Typical values refer to $V_{PWR} = 56 \text{ V}$, $T_A = 25^\circ\text{C}$, unless otherwise noted.

Symbol	Parameter	[6] [14]	Min	Typ	Max	Unit	
V_{LEAK}	Cell terminal leakage detection level	[6] [14]	-27	—	27	mV	
V_{REF_DIAG}	ISENSE diagnostic reference with PGA having gain 4		124 —	127	130 —	mV	
V_{OFF_DIAG}	ISENSE diagnostic common mode offset voltage	[15]	—	—	37.2	μV	
V_{REF_ZD}	Precision diagnostic Zener reference for cell voltage channel functional verification	[6]	4.45 —	4.6	4.85 —	V	
V_{CVFV}	Cell voltage channel functional verification allowable error in CT verification measurement	[6] [14]	-22	—	6.0	mV	
V_{BGP}	Voltage reference used in ADC1-A,B functional verification		—	1.18	—	V	
ADC1aFV, ADC1bFV	ADC1-A and ADC1-B functional verification Maximum tolerance between ADC1-A, B and diagnostic reference ($1.5 \text{ V} \leq V_{CELL} \leq 4.3 \text{ V}$)	[14]		-5.25	—	5.25	mV
CTx_UV_TH	Undervoltage functional verification threshold in diagnostic mode $1.5 \text{ V} \leq V_{CELL} \leq 2.7 \text{ V}$ $2.5 \text{ V} \leq V_{CELL} \leq 3.7 \text{ V}$ $2.5 \text{ V} \leq V_{CELL} \leq 4.3 \text{ V}$	[13]	390 650 1200	— — —	— — —	mV	
CTx_OV_TH	Oversupply functional verification threshold in diagnostic mode $1.5 \text{ V} \leq V_{CELL} \leq 2.7 \text{ V}$ $2.5 \text{ V} \leq V_{CELL} \leq 3.7 \text{ V}$ $2.5 \text{ V} \leq V_{CELL} \leq 4.3 \text{ V}$	[13]	— — —	— — —	1800 4000 4000	mV	
Cell balance drivers							
$V_{DS(CLAMP)}$	Cell balance driver VDS active clamp voltage		10 —	11	12 —	V	
$V_{OUT(FLT_TH)}$	Output fault detection voltage threshold Balance off (open load) Balance on (shorted load)		0.3 —	0.55	0.75 —	V	
R_{PD_CB}	Output OFF open load detection pull-down resistor Balance off, open load detect disabled		1.7 —	2.0	2.9 —	kΩ	
$I_{OUT(LKG)}$	Output leakage current Balance off, open load detect disabled at $V_{DS} = 4.0 \text{ V}$		—	—	1.0	μA	
$R_{DS(on)}$	Drain-to-source on resistance $I_{OUT} = 300 \text{ mA}, T_J = 105^\circ\text{C}$ $I_{OUT} = 300 \text{ mA}, T_J = 25^\circ\text{C}$ $I_{OUT} = 300 \text{ mA}, T_J = -40^\circ\text{C}$		— — —	— 0.5 0.4	0.80 — —	Ω	
I_{LIM_CB}	Driver current limitation		310	—	950	mA	
t_{ON}	Cell balance driver turn on $R_L = 15 \Omega$		—	350	450 —	μs	
t_{OFF}	Cell balance driver turn off $R_L = 15 \Omega$		—	200	—	μs	
$t_{BAL_DEGLICHTH}$	Short/open detect filter time		19 —	20	42.1 —	μs	
Internal temperature measurement							

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions $9.6 \text{ V} \leq V_{PWR} \leq 63 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$, $GND = 0 \text{ V}$, unless otherwise stated. Typical values refer to $V_{PWR} = 56 \text{ V}$, $T_A = 25^\circ\text{C}$, unless otherwise noted.

Symbol	Parameter	Min	Typ	Max	Unit
IC_TEMP1_ERR	IC temperature measurement error	-3.0	—	3.0	K
IC_TEMP1_RES	IC temperature resolution	—	0.032	—	K/LSB
TSD_TH	Thermal shutdown	155 —	170	185 —	°C
TSD_HYS	Thermal shutdown hysteresis	5.0 —	10	12.2 —	°C
Default operational parameters					
$V_{CTOV(TH)}$	Cell overvoltage threshold (8 bits), typical value is default value after RESET	0.0	4.2	5.0	V
$V_{CTOV(RES)}$	Cell overvoltage threshold resolution	—	19.53125	—	mV/LSB
$V_{CTUV(TH)}$	Cell undervoltage threshold (8 bits), typical value is default value after RESET	0.0	2.5	5.0	V
$V_{CTUV(RES)}$	Cell undervoltage threshold resolution	—	19.53125	—	mV/LSB
$V_{GPIO_OT(TH)}$	GPIOx configured as ANx input overtemperature threshold after RESET	—	1.16	—	V
$V_{GPIO_OT(RES)}$	Temperature voltage threshold resolution	—	4.8828125	—	mV/LSB
$V_{GPIO_UT(TH)}$	GPIOx configured as ANx input undertemperature threshold after RESET	—	3.82	—	V
$V_{GPIO_UT(RES)}$	Temperature voltage threshold resolution	—	4.8828125	—	mV/LSB
General purpose input/output GPIOx					
V_{IH}	Input high-voltage (3.3 V compatible)	[16]	2.0	—	V
V_{IL}	Input low-voltage (3.3 V compatible)	[16]	—	—	1.0 V
V_{HYS}	Input hysteresis	[16]	—	100	— mV
I_{IL}	Input leakage current Pins tristate, $V_{IN} = V_{COM}$ or AGND	—	-100	—	nA
I_{IDL}	Differential Input Leakage Current GPIO 5,6 GPIO 5,6 configured as digital inputs for current measurement	—	-30	—	nA
V_{OH}	Output high-voltage $I_{OH} = -0.5 \text{ mA}$	$V_{COM} - 0.8$	—	—	V
V_{OL}	Output low-voltage $I_{OL} = +0.5 \text{ mA}$	—	—	0.8	V
V_{ADC}	Analog ADC input voltage range for ratiometric measurements	AGND	—	V_{COM}	V
$V_{OL(TH)}$	Analog input open pin detect threshold	0.1 —	0.15	0.23 —	V
R_{OPENPD}	Internal open detection pull-down resistor	[17]	3.8 —	5.0	$k\Omega$
t_{GPIO0_WU}	GPIO0 WU de-glitch filter	47 —	50	85 —	μs
t_{GPIO0_FLT}	GPIO0 daisy chain de-glitch filter both edges	19 —	20	48 —	μs
t_{GPIO2_SOC}	GPIO2 convert trigger de-glitch filter	1.9 —	2.0	2.1 —	μs
t_{GPIOx_DIN}	GPIOx configured as digital input de-glitch filter	2.5	—	5.6	μs
Reset input					

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions $9.6 \text{ V} \leq V_{PWR} \leq 63 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$, $GND = 0 \text{ V}$, unless otherwise stated. Typical values refer to $V_{PWR} = 56 \text{ V}$, $T_A = 25^\circ\text{C}$, unless otherwise noted.

Symbol	Parameter	Min	Typ	Max	Unit
V_{IH_RST}	Input high-voltage (3.3 V compatible)	2.0	—	—	V
V_{IL_RST}	Input low-voltage (3.3 V compatible)	—	—	1.0	V
V_{HYS}	Input hysteresis	—	0.6	—	V
$t_{RESETFLT}$	RESET de-glitch filter	—	100	—	μs
R_{RESET_PD}	Input logic pull down (RESET)	—	100	—	$\text{k}\Omega$
SPI_COM_EN input					
V_{IH}	Input high-voltage (3.3 V compatible)	2.0	—	—	V
V_{IL}	Input low-voltage (3.3 V compatible)	—	—	1.0	V
V_{HYS}	Input hysteresis	—	450	—	mV
$R_{SPI_COM_EN_PD}$	Input pull-down resistor (SPI_COM_EN)	—	100	—	$\text{k}\Omega$
Digital interface					
V_{FAULT_HA}	FAULT output (high active, $IOH = 1.0 \text{ mA}$)	4.0 —	4.9	6.0 —	V
I_{FAULT_CL}	FAULT output current limit	3.0	—	40	mA
R_{FAULT_PD}	FAULT output pull-down resistance	—	100	—	$\text{k}\Omega$
V_{IH_COMM}	Voltage threshold to detect the input as high SI/RDTX_IN+, SCLK/RDTX_IN-, CSB, SDA, SCL (NOTE: needs to be 3.3 V compatible)	—	—	2.0	V
V_{IL_COMM}	Voltage threshold to detect the input as low SI/RDTX_IN+, SCLK/RDTX_IN-, CSB, SDA, SCL	0.8	—	—	V
V_{HYS}	Input hysteresis SI/RDTX_IN+, SCLK/RDTX_IN-, CSB, SDA, SCL	30 —	80	130 —	mV
I_{LOGIC_SS}	Sleep state input logic current CSB	—100	—	100	nA
R_{SCLK_PD}	Input logic pull-down resistance (SCLK/RDTX_IN-, SI/RDTX_IN+)	—	20	—	$\text{k}\Omega$
R_{I_PU}	Input logic pull-up resistance to V_{COM} (CSB, SDA, SCL)	—	100	—	$\text{k}\Omega$
I_{SO_TRI}	Tristate SO input current 0 V to V_{COM}	—2.0	—	2.0	μA
V_{SO_HIGH}	SO high-state output voltage with $I_{SO(HIGH)} = -2.0 \text{ mA}$	$V_{COM} - 0.4$	—	—	V
V_{SO_LOW}	SO, SDA, SLK low-state output voltage with $I_{SO(HIGH)} = -2.0 \text{ mA}$	—	—	0.4	V
CSB_{WU_FLT}	CSB wake-up de-glitch filter, low to high transition	—	—	80	μs
System timing					
t_{CELL_CONV}	Time needed to acquire all 14 cell voltages and the current after an on-demand conversion	[18]		—	μs
	13-bit resolution	56	59	62	
	14-bit resolution	—	80	—	
	15-bit resolution	76	123	84	
	16-bit resolution	—	208	—	
		117	—	129	
		—	—	—	
		197	218	—	
		—	—	—	

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions $9.6 \text{ V} \leq V_{PWR} \leq 63 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$, $GND = 0 \text{ V}$, unless otherwise stated. Typical values refer to $V_{PWR} = 56 \text{ V}$, $T_A = 25^\circ\text{C}$, unless otherwise noted.

Symbol	Parameter	[18]	Min	Typ	Max	Unit
t_{SYNC}	V/I synchronization time ADC1-A,B at 13 bit, ADC2 at 13 bit ADC1-A,B at 14 bit, ADC2 at 13 bit ADC1-A,B at 15 bit, ADC2 at 13 bit ADC1-A,B at 16 bit, ADC2 at 13 bit		—	48.16	—	μs
			—	53.50	—	
			—	64.16	—	
			—	85.50	—	
t_{SYNC}	V/I synchronization time ADC1-A,B at 13 bit, ADC2 at 14 bit ADC1-A,B at 14 bit, ADC2 at 14 bit ADC1-A,B at 15 bit, ADC2 at 14 bit ADC1-A,B at 16 bit, ADC2 at 14 bit	[18]	—	52.14	—	μs
			—	57.48	—	
			—	68.14	—	
			—	89.48	—	
t_{SYNC}	V/I synchronization time ADC1-A,B at 13 bit, ADC2 at 15 bit ADC1-A,B at 14 bit, ADC2 at 15 bit ADC1-A,B at 15 bit, ADC2 at 15 bit ADC1-A,B at 16 bit, ADC2 at 15 bit	[18]	—	62.12	—	μs
			—	65.46	—	
			—	76.12	—	
			—	97.46	—	
t_{SYNC}	V/I synchronization time ADC1-A,B at 13 bit, ADC2 at 16 bit ADC1-A,B at 14 bit, ADC2 at 16 bit ADC1-A,B at 15 bit, ADC2 at 16 bit ADC1-A,B at 16 bit, ADC2 at 16 bit	[18]	—	120.51	—	μs
			—	117.84	—	
			—	112.51	—	
			—	113.39	—	
$t_{VPWR(READY)}$	Time after VPWR connection for the IC to be ready for initialization	—	—	5.0	ms	
$t_{WAKE-UP}$	Power up duration	—	—	440	μs	
t_{WAKE_DELAY}	Time between wake pulses	500	600	700	μs	
t_{NOWUP}	Time, starting from the first SOM received, to go back to Sleep/Idle mode time after receiving incomplete TPL bus wake-up sequence	—	—	1.3	ms	
t_{IDLE}	Idle timeout after POR	57	60	64	s	
$t_{BALANCE}$	Cell balance timer range	0.5	—	511	min	
t_{CYCLE}	Cyclic acquisition timer range	0.0	—	8.5	s	
t_{FAULT}	Fault detection to activation of fault pin Normal mode	—	—	56	μs	
t_{DIAG}	Diagnostic mode timeout	0.047	1.0	8.5	s	
t_{EOC}	SOC to data ready (includes post processing of data, ADC_CFG[AVG]=0) 13-bit resolution 14-bit resolution 15-bit resolution 16-bit resolution	[18]	140 — 190 — 291 — 494 —	148 201 307 520 — 546 —	156 — 211 — 323 — —	μs
t_{SETTLE}	Time after SOC to begin converting with ADC1-A,B	[18]	11.67	12.28	12.90	μs
t_{SYS_MEAS1}	Time needed to send an SOC command and read back 96 cell voltages, 48 temperatures, 1 current, and 1 coulomb counter, and ADC1-A,B configured as follows (with ADC_CFG[AVG]=0):					ms

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions $9.6 \text{ V} \leq V_{PWR} \leq 63 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$, $GND = 0 \text{ V}$, unless otherwise stated. Typical values refer to $V_{PWR} = 56 \text{ V}$, $T_A = 25^\circ\text{C}$, unless otherwise noted.

Symbol	Parameter	Min	Typ	Max	Unit
	13-bit resolution	—	4.67	—	
	14-bit resolution	—	4.73	—	
	15-bit resolution	—	4.83	—	
	16-bit resolution	—	5.05	—	
t_{SYS_MEAS2}	Time needed to send an SOC command and read back 96 cell voltages, 1 current, and 1 coulomb counter and ADC1-A,B configured as follows (with ADC_CFG[AVG]=0): 13-bit resolution 14-bit resolution 15-bit resolution 16-bit resolution	—	3.24 3.39 3.40 3.61	—	ms
t_{CLST_TPL}	Time needed to send an SOC command and read back 14 cell voltages, 7 temperatures, 1 current, and 1 coulomb counter with TPL communication working at 2.0 Mbps and ADC1-A,B configured as follows (with ADC_CFG[AVG]=0): 13-bit resolution 14-bit resolution 15-bit resolution 16-bit resolution	—	0.85 0.90 1.101 1.22	—	ms
t_{CLST_SPI}	Time needed to send an SOC command and read back 14 cell voltages, 7 temperatures, 1 current, and 1 coulomb counter with SPI communication working at 4.0 Mbps and ADC1-A,B configured as follows (with ADC_CFG[AVG]=0): 13-bit resolution 14-bit resolution 15-bit resolution 16-bit resolution	—	0.57 0.64 0.76 1.03	—	ms
$t_{I2C_DOWNLOAD}$	Time to download EEPROM calibration after POR	—	—	1.0	ms
t_{I2C_ACCESS}	EEPROM access time, EEPROM write (depends on device selection)	—	5.0	—	ms
$t_{WAVE_DC_BITx}$	Daisy chain duty cycle off time $t_{WAVE_DC_BITx}=00$	450 —	500	550	μs
$t_{WAVE_DC_BITx}$	Daisy chain duty cycle off time $t_{WAVE_DC_BITx}=01$	0.9 —	1.0	1.1	ms
$t_{WAVE_DC_BITx}$	Daisy chain duty cycle off time $t_{WAVE_DC_BITx}=10$	9 —	10	11	ms
$t_{WAVE_DC_BITx}$	Daisy chain duty cycle off time $t_{WAVE_DC_BITx}=11$	90 —	100	110	ms
$t_{WAVE_DC_ON}$	Daisy chain duty cycle on time	450 —	500	550	μs
t_{COM_LOSS}	Time out to reset the IC in the absence of communication	—	1024	—	ms
SPI interface					
t_{SPI_TD}	Sequential data transfer delay in SPI mode (N)	[19]	1.0	—	μs
F_{SCK}	SCLK/RDTX_IN– frequency	[19]	—	—	4.0 MHz

Table 8. Static and dynamic electrical characteristics...continued

Characteristics noted under conditions $9.6 \text{ V} \leq V_{PWR} \leq 63 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$, $GND = 0 \text{ V}$, unless otherwise stated. Typical values refer to $V_{PWR} = 56 \text{ V}$, $T_A = 25^\circ\text{C}$, unless otherwise noted.

Symbol	Parameter		Min	Typ	Max	Unit
t_{SCK_H}	SCLK/RDTX_IN- high time (A)	[19]	125	—	—	ns
t_{SCK_L}	SCLK/RDTX_IN- high time (B)	[19]	125	—	—	ns
t_{SCK}	SCLK/RDTX_IN- period (A+B)	[19]	250	—	—	ns
t_{FALL}	SCLK/RDTX_IN- falling time	[19]	—	—	15	ns
t_{RISE}	SCLK/RDTX_IN- rising time	[19]	—	—	15	ns
t_{SET}	SCLK/RDTX_IN- setup time (O)	[19]	20	—	—	ns
t_{HOLD}	SCLK/RDTX_IN- hold time (P)	[19]	20	—	—	ns
t_{SI_SETUP}	SI/RDTX_IN+ setup time (F)	[19]	40	—	—	ns
t_{SI_HOLD}	SI/RDTX_IN+ hold time (G)	[19]	40	—	—	ns
t_{SO_VALID}	SO data valid, rising edge of SCLK/RDTX_IN- to SO data valid (I)	[19]	—	—	40	ns
t_{SO_EN}	SO enable time (H)	[19]	—	—	40	ns
$t_{SO_DISABLE}$	SO disable time (K)	[19]	—	—	40	ns
t_{CSB_LEAD}	CSB lead time (L)	[19]	100	—	—	ns
t_{CSB_LAG}	CSB lag time (M)	[19]	100	—	—	ns
TPL interface (MCU)						
t_{MCU_RES}	Time between two consecutive message request transmitted by MCU	[20]	4.0	—	—	μs
t_{WU_Wait}	Time the MCU shall wait after sending first wake-up message per 33771 IC	[21]	0.75	—	—	ms
TPL interface (33771)						
t_{TPL_TD}	Sequential data transfer delay in TPL mode	[22] [23]	3.8	4.0	4.25	μs
t_{TPL}	Transmit pulse duration	—	210	—	—	ns
t_{port_delay}	Port delay introduced by each repeater in 33771	[24]	—	—	0.95	μs
t_{RES}	Slave response after read command	[22] [25]	4.0	5.0	9	μs
V_{RDTX_INTH}	Differential receiver threshold	—	480	580	680	mV
t_{EOM}	Message timeout duration	[26]	238	250	—	μs

[1] Use of ADC1-A,B can be performed with a duty cycle of $t_{EOC}/\text{period} (\mu\text{s})$. For example, $\text{SYS_CFG1}[\text{CYCLIC_TIMER}] = 010$, corresponding to 100000 μs period, and $\text{ADC_CFG}[\text{ADC1_A_DEF}] = \text{ADC_CFG}[\text{ADC1_B_DEF}] = 11$, corresponding to 16 bits and therefore $t_{EOC} = 520 \mu\text{s}$, given a duty cycle of 0.0052 (or ROM). When an ADC is configured in continuous mode, the duty cycle is equal to 1, resulting in high-current consumption.

[2] To calculate the current consumption in sleep mode, the following formula has to be used: $I_{SLEEP_MODE} = (1 - t_{NORMAL}) \cdot I_{VPOWER(SS)} + t_{NORMAL} \cdot [I_{VPOWER} + I_{VPOWER(ADC)} + I_{VPOWER(CBON)}]$ (not zero only if $\text{SYS_CFG1}[\text{CB_DRVEN}] = 1$), where $t_{NORMAL} = (t_{VCOM} + t_{EOC})/\text{period} (\mu\text{s})$, where t_{EOC} depends on the selected number of bits for the ADCs (see $\text{ADC_CFG}[\text{ADC1_A_DEF}, \text{ADC1_B_DEF}, \text{ADC2_DEF}]$ fields) and $\text{period} (\mu\text{s})$ depends on $\text{SYS_CFG1}[\text{CYCLIC_TIMER}]$, as explained in note [1]. Evidently $I_{SLEEP_MODE} = I_{VPOWER(SS)}$ only if no conversion is requested in sleep mode (for example, $\text{SYS_CFG1}[\text{CYCLIC_TIMER}] = 000$) and if the cell balancing is OFF.

[3] If the battery stack has at least eight cells and if $-1.5 \text{ V} < V_{PWR} - V_{CT_14} < -0.7 \text{ V}$, each cell voltage has to be greater than 2.0 V to meet the accuracy spec. If the battery stack has seven cells and if $-1.5 \text{ V} < V_{PWR} - V_{CT_14} < -0.7 \text{ V}$, each cell voltage has to be greater than 2.3 V to meet the accuracy spec.

[4] 5 % to 95 % rise time

[5] ADC1-A/B may clamp when the voltage of the Cellx or ANx is over 4.85 V.

[6] The cell voltage error includes all internal errors, for example; ADC offset, gain error, INL and DNL. Current measurement is not active when measuring the cell voltage. Single shot measurements are affected by noise, which has zero mean and standard deviation given by VV_NOISE and is not included in the cell voltage error. In order to reduce it, SW implemented IIR or FIR low-pass filters may be used; example, a moving average, whose length is N samples, has output standard deviation $VOUTPUT_NOISE = VV_NOISE / \sqrt{N}$. Performance can be granted only if ADC1-A,B are configured at 16-bits resolution ($\text{ADC_CFG}[\text{ADC1_A_DEF}] = \text{ADC_CFG}[\text{ADC1_B_DEF}] = 11$) and if $-100 \text{ mV} \leq CTREF - GND \leq 100 \text{ mV}$.

- [7] Inaccuracies from soldering or aging are not included.
- [8] If the battery stack has at least eight cells, for all accuracy ranges, the accuracy for a given cell can be guaranteed if all other cells are at least at 1.2 V. If the battery stack has seven cells, for all accuracy ranges, the achievement of the accuracy spec for a given cell can be guaranteed if all other cells are at least 1.8 V.
- [9] Inaccuracies from soldering (MSL3 preconditioning) and aging (after 3000 h HTOL at $T_A = 125^\circ\text{C}$) are included.
- [10] Offset error is considered at PGA inputs, with PGA gain being set to 256. Both PGA inputs are grounded (shorted together with $\text{SYS_DIAG}[\text{I_MUX}]=11$). The offset value, guaranteed by design, does not include the noise, which is considered to be averaged. The noise is characterized by $\text{V}_\text{I_NOISE}$ and is also with PGA gain set to 256 and PGA inputs shorted together with $\text{SYS_DIAG}[\text{I_MUX}]=11$.
- [11] Performance can be granted only if the ADC2 is configured at the best resolution, namely, $\text{ADC_CFG}[\text{ADC2_DEF}]=11$.
- [12] Setting the $\text{SYS_DIAG}[\text{ISENSE_OL_DIAG}]$ bit to logic 1 causes the injection of the current $\text{I}_{\text{SENSE_OL}}$ in both $\text{ISENSE} \pm$ pins, so if the shunt is disconnected, in one or both of the input pins there is an increased voltage due to charging of external capacitors. Comparison to the threshold $\text{V}_{\text{ISENSE_OL}}$ detects the open fault.
- [13] Only one of the three threshold values shall be selected, dependent on the voltage range in which the cell is typically working, provided a 5 k Ω resistor is used for the input cell low pass filter. Using a dynamic selection of the threshold, depending on the measured voltage is not allowed.
- [14] This threshold value corresponds to a safety margin as defined in the Safety Manual.
- [15] Diagnostic threshold when the PGA inputs are shorted together, the PGA gain is set at 256 and the ADC2 is configured at 16 bit.
- [16] For GPIO0 configured as wake-up, transition time must be shorter than 100 μs .
- [17] During internal open detection, an internal pull-up current of 10 μA typical is generated in the pin.
- [18] See the ADC conversion sequence in Figure 10
- [19] See the timing diagram in Figure 5
- [20] It is the time which MCU shall wait for sending new message request to 33771.
- [21] The waiting time for MCU after transmitting the first wake-up message is dependent on the number of 33771 in daisy chain. If the number of nodes in daisy chain is N, then the total waiting time for MCU after sending first wake-up message is $N \cdot t_{\text{twu_wait}}$
- [22] See the waveforms diagram in Figure 29
- [23] $t_{\text{PPL_TD}}$ is the time between two consecutive response messages at the node which is initiating transmission. This time could vary when measured at other forwarding nodes in daisy chain.
- [24] The expected waiting time for MCU, to get the response from 33771 is dependant on number of 33771 used in daisy chain. The repeater of each node imposes a delay of $t_{\text{port_delay}}$ for both request and response. Example: if 24, 33771 ICs are used in a daisy chain, the last node (24th 33771) receives the request in $(24 \cdot 0.95) \mu\text{s} = 22.8 \mu\text{s}$.
- [25] t_{RES} is the time between request received and response transmitted by the slave device, which is addressed in the read command. This time could vary when measured at other forwarding nodes in daisy chain.
- [26] The EOM time out counter starts/restarts after reception of SOM. This means that the maximum length of allowed message frame is t_{EOM} . If a valid EOM is not received in this time frame, the message frame is discarded and the device is ready for new reception.

8.5 Timing diagrams

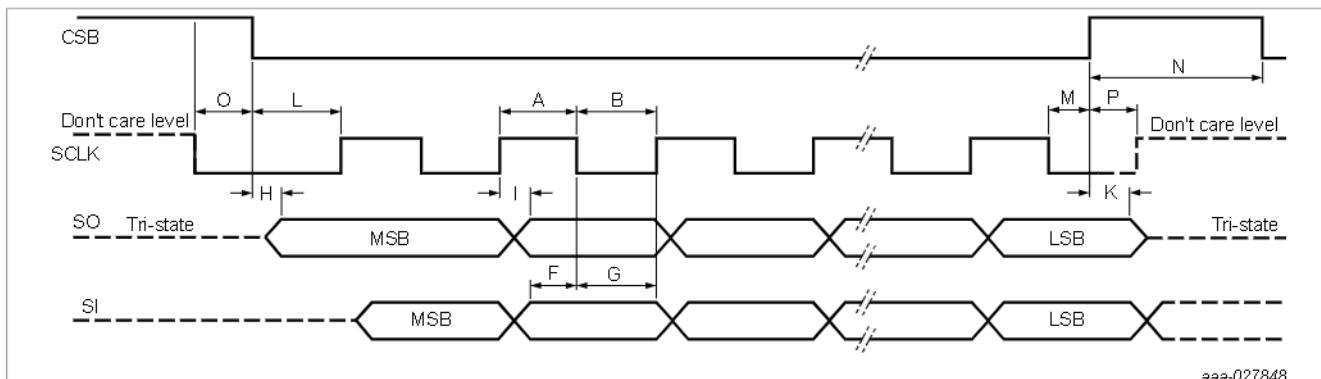


Figure 5. Low-voltage SPI interface timing

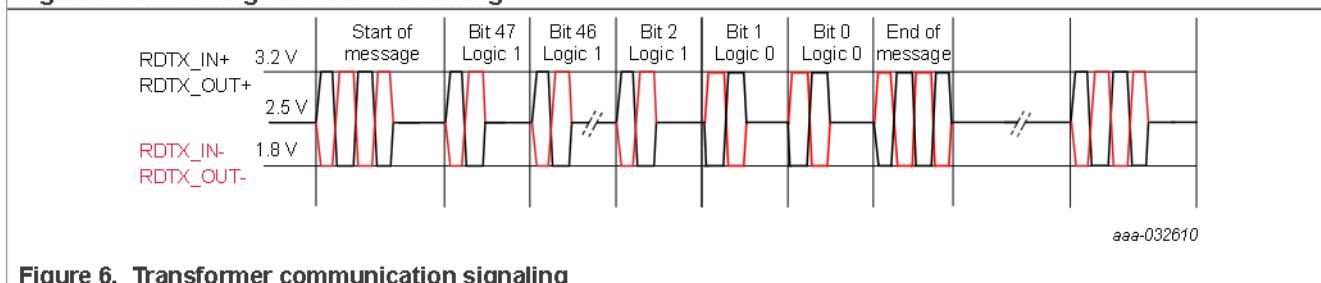


Figure 6. Transformer communication signaling

9 Functional description

9.1 Introduction

The MC33771C contains all circuit blocks necessary to perform synchronized battery voltage measurements, battery current measurement, coulomb counting, cell temperature measurement and integrated cell balancing. These features along with high speed communication make the MC33771C ideal for automotive Lithium-ion battery monitoring. In addition to the battery management functions, the MC33771C is designed to monitor many internal and external functions to validate the integrity of the measurements and the measurement system. The following section describes in detail the features, functions and modes of operation of the device. [Table 9](#) summarizes the IC measurement capability depending on the operating mode. Following terms, phrasings and conventions are used in this document:

- User: this word denotes the battery pack controller, including at least one MCU, where the intelligence of the system is located. The pack controller uses one or more 33771 to sense the physical quantities of a battery.
- User parameter (or simply parameter): it is a datum memorized in the IC registers that is readable or writable by the user and is denoted by an identifier within square brackets preceded by a prefix, for example, REGISTER_NAME[FIELD_NAME], where REGISTER_NAME is the symbol for the intended register and FIELD_NAME is the symbol for the parameter itself, which is, in general, a portion of the 16-bit register data.
- Channel: it is a signal, which can be measured. There are external channels, for example, cell voltages and temperatures, and internal channels, for example, die temperature, and voltage diagnostic references.
- Conversion: this word denotes an analog to digital conversion performed by an ADC and is often meant as measurement of a given channel.
- Sequence: this term denotes a scan of channels that enter some multiplexers to be routed to the ADCs according to a certain sequence. During the scan, each ADC performs subsequent data conversions, where each conversion affects a predetermined channel. Sequences are necessary because the number of channels is much greater than the number of ADCs.
- Cyclic measurement: this means the bank of ADCs perform sequences autonomously, for example, with no intervention requested to the user. The user has to do a single programming of an internal timer by providing it with the period value. Then the timer provides the periodic trigger starting each measurement sequence. For example, the period may be 100 ms, while the sequence duration is order of magnitudes shorter. The main purpose of performing cyclic measurements is to carry out automatic comparisons of some measured channels against predefined tunable thresholds, so some fault bits can be set accordingly. Fault bits are readable by the user by accessing the proper fault registers through the ordinary communication channel; or the fault bits may be used to assert the FAULT pin, for the safety information be propagated to the user through the fault line of daisy chained devices.
- On-demand measurement: this means the bank of ADCs perform a sequence when triggered by a SOC command, where SOC means start of conversion. Typically, the user periodically sends a SOC command followed by the reading of the measured values of the most important channels, namely all cell voltages, temperatures and current.

Table 9. Working mode versus measurements

Operating mode	on-demand measurements	Voltage/temperature cyclic measurements	Current measurement	Coulomb counter	Reference
Normal mode	Available	Available, if SYS_CFG1[CYCLIC_TIMER] ≠ 0	Available and running continuously if enabled by setting SYS_CFG1[I_MEAS_EN] = 1	Available and running continuously if enabled by setting SYS_CFG1[I_MEAS_EN] = 1 <u>Exception:</u> when the device transitions from sleep to normal mode, it is frozen until it is read and reset by the user	Section 9.3.4
Diagnostic mode	Available	Not available	Available and running continuously if enabled by	Available and running continuously if enabled by	Section 9.3.6

Table 9. Working mode versus measurements...continued

Operating mode	on-demand measurements	Voltage/temperature cyclic measurements	Current measurement	Coulomb counter	Reference
			setting SYS_CFG1[_MEAS_EN] = 1	setting SYS_CFG1[_MEAS_EN] = 1	
Sleep mode	Not available	Available, if SYS_CFG1[CYCLIC_TIMER] ≠ 0	Available if enabled by setting SYS_CFG1[_MEAS_EN] = 1, timing depends on SYS_CFG1[CYCLIC_TIMER] (it must be ≠ 0)	Available if enabled by setting SYS_CFG1[_MEAS_EN] = 1, timing depends on SYS_CFG1[CYCLIC_TIMER] (it must be ≠ 0)	Section 9.3.5
other modes	Not available	Not available	Not available	Not available	

9.2 Power supplies and reset

9.2.1 Decoupling of power supplies

The recommended decoupling of power supplies is shown in [Figure 7](#). The capacitors should be placed close to the IC pins.

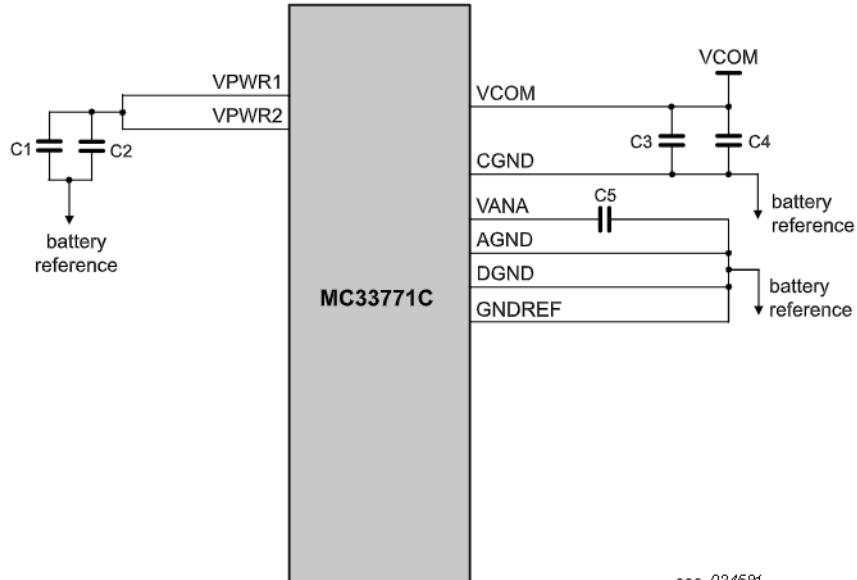


Figure 7. Recommended decoupling of power supplies

Table 10. Recommended capacitor values for power supply decoupling

ID	Value	Units	Comments
C1	220	nF	
C2	1	nF	
C3	2.2	µF	Ceramic capacitor
C4	220	pF	
C5	47	nF	Ceramic capacitor

9.2.2 VPWR overvoltage, low-voltage

The MC33771C incorporates comparators to monitor VPWR pins for overvoltage and low-voltage conditions. In the event the voltage on VPWR pin is above the overvoltage threshold $V_{PWR(OV_Flag)}$ for greater than the $t_{VPWR(Filter)}$ period, the overvoltage fault flag is set in FAULT1_STATUS[VPWR_OV_FLT].

When unmasked by FAULT_MASK1[MASK_12_F], the FAULT1_STATUS[VPWR_OV_FLT] bit sets the FAULT output pin high. An overvoltage condition on the VPWR pin does not cause the MC33771C to perform a shutdown. The pack controller may clear the FAULT1_STATUS[VPWR_OV_FLT] bit when VPWR returns to the normal operating range by writing logic 0 to the FAULT1_STATUS[VPWR_OV_FLT] bit.

A low-voltage condition on VPWR pin causes the FAULT1_STATUS[VPWR_LV_FLT] bit to be set. The FAULT1_STATUS[VPWR_LV_FLT] bit may be cleared when the normal operating range voltage resumes on the VPWR pin and by writing 0 to the FAULT1_STATUS[VPWR_LV_FLT].

9.2.3 VCOM supply

The VCOM supply is a linear regulator used to supply power for communication, GPIOx, SPI interface, external temperature sensor reference, and optional external EEPROM.

The VCOM supply is monitored by the MC33771C for undervoltage. Excessive load on the VCOM pin activates VCOM current limit causing an undervoltage fault condition to occur. During the event, the FAULT2_STATUS[VCOM_UV_FLT] fault bit is set and the regulator enters $t_{VCOM(RETRY)}$ shutdown/retry strategy.

Undervoltage shutdown of the VCOM supply directly affects communication, GPIO outputs and external temperature measurements. In addition to setting the individual fault bits for each ANx/GPIO, multiple faults may be set in the FAULTx_STATUS register.

Faults may be cleared by the pack controller when communication resumes. VCOM also has a comparator that monitors for overvoltage. In the event the voltage on VCOM becomes greater than $V_{COM(OV)}$, the FAULT2_STATUS[VCOM_OV_FLT] fault flag is set.

9.2.4 VANA supply

The VANA supply is an internal 2.5 V supply used by the MC33771C for analog control. No circuits other than the decoupling capacitor should be terminated to the VANA pin. The VANA supply is monitored by the MC33771C for undervoltage. External load on the VANA pin activates the VANA current limit causing an undervoltage fault condition to occur. During the event, the FAULT2_STATUS[VANA_UV_FLT] fault bit is set and the regulator enters $t_{VANA(RETRY)}$ shutdown/retry strategy.

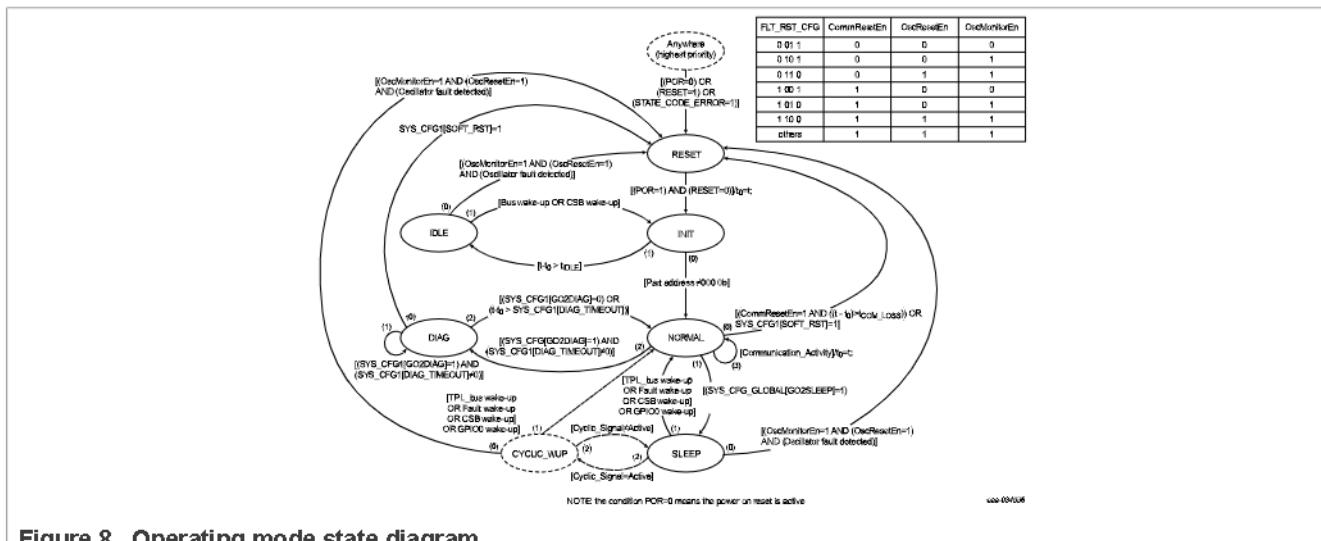
Undervoltage shutdown of the VANA supply directly affects the performance of the analog to digital converters generating fault condition. Additionally, VANA is monitored by the ADC converter for an overvoltage condition each time a conversion sequence is performed. In the event VANA exceeds the $V_{ANA(OV)}$ threshold, the FAULT2_STATUS[VANA_OV_FLT] is set.

9.2.5 Power on reset (POR)

The MC33771C has two sources of power on reset (POR) in the IC system. An undervoltage condition on the VPWR pin causes the MC33771C to reset. Upon returning from undervoltage, the MC33771C performs a POR.

The second source of potential POR occurs during transient conditions when the internal digital logic supply voltage drops below the critical threshold where logic states cannot be guaranteed. In this case, the MC33771C performs a power on reset.

Power on reset is indicated by the FAULT1_STATUS[POR] bit. In the event of a POR, all registers in the MC33771C are set to their power on reset state and the FAULT pin becomes active.


9.2.6 Hardware and software reset

An active high on the RESET pin for greater than the $t_{RESETFLT}$ filter time causes the MC33771C to reset. Software resets are performed when the MC33771C receives a message written to the SYS_CFG1[SOFT_RST] bit. Hardware and software resets are indicated by the status of the FAULT1_STATUS[RESET_FLT] bit, and the FAULT pin becomes active. After a HW or SW reset, it is necessary to wait for the time interval $t_{VPWR(READY)}$ before being possible to reprogram the part.

9.3 Modes of operation

From RESET mode, the MC33771C must be initialized with a cluster ID before the device is allowed to enter NORMAL mode. After initialization, the MC33771C enters NORMAL mode. In NORMAL mode the device is in full operation performing the necessary safety functions as well as on-demand conversions. When commanded to SLEEP mode, the device will have reduced current consumption. Diagnostic mode provides a method for diagnosing the integrity of many safety functions as well as internal or external faults that may have occurred. If properly configured, if there is no traffic during NORMAL mode on the bus during t_{COM_LOSS} , the MC33771C will reset.

In the event the device is powered up and not initialized, the MC33771C enters the low-power IDLE mode after a t_{IDLE} timeout period. Detecting a wake-up pattern transfers the MC33771C to the initialization state INIT where the CID can be programmed. In [Figure 8](#), an integer number enclosed in round brackets close to a transition arc indicates the priority of such a state transition in case the conditions are verified at the same time. The lower the number is, the higher is the priority, so if several conditions are true at the same time, the one with lowest priority number determines the state transition; a boolean condition is enclosed between square brackets. A list of actions after the state transition condition is preceded by the slash symbol. Symbol 't' represents the absolute time, symbol t_0 stays for a variable having the dimension of time.

Figure 8. Operating mode state diagram

Table 11. Power supply mode operation

	Normal/Init mode	Diagnostic mode	Cyclic WUP	Sleep/Idle mode
Supplies active	VCOM = ON, VANA = ON	VCOM = ON, VANA = ON	VCOM = ON (during cycle) VANA = ON (during cycle)	VCOM = 0, VANA = 0
Communication	Communication enabled	Communication enabled	Communication enabled (during cycle)	Wake-up function only

9.3.1 Reset mode

The table in [Figure 8](#) provides information about the mapping between all possible values of the SYS_CFG2[FLT_RST_CFG] field, which may be written and read by the user, and the corresponding values of the following internal bits, which are not user readable:

- CommResetEN: If it is equal to 1, the IC reset due to a communication timeout in NORMAL mode is enabled, else it is disabled
- OscResetEN: If it is equal to 1, the IC reset due to the detection of a defective oscillator in SLEEP mode is enabled, else it is disabled
- OscMonitorEN: If it is equal to 1, the oscillator monitoring is enabled, else it is disabled

The value "others" readable in the column labeled as SYS_CFG2[FLT_RST_CFG] refers to values that are different from those listed above.

The registers are reset to their default values, except some bits of the FAULT1_STATUS register.

9.3.2 Idle mode

The MC33771C enters IDLE mode from INIT mode when the communication bus is not active for the t_{IDLE} time period. While the MC33771C is in IDLE mode, no messages are recognized, only a valid wake-up sequence lets the device transition from IDLE mode to INIT mode. When the MC33771C is configured as a SPI interface and enters IDLE mode, the device transitions from IDLE mode to INIT mode if CSB duration is larger than CSB_{WU_FLT} maximum value, otherwise the pulse will be considered as a glitch and then filtered.

9.3.3 Init mode

After a Power On Reset (POR) or Reset (Soft RST or pin RESET), the MC33771C enters INIT mode. The MC33771C's cluster ID is 0 (unassigned CID). All registers, except the INIT register, are read-only. In INIT mode, any unassigned MC33771C does not forward any message and responds (if needed) only on the side that received a request. The user has to assign a Cluster ID between 1 and 63, to enter NORMAL mode. This assignment is mandatory for both SPI and TPL communication. If the assignment of a Cluster ID is not performed within the t_{IDLE} timeout, IDLE mode will be entered to reduce current consumption.

9.3.4 Normal mode

In NORMAL mode, on reception of a valid message, the MC33771C executes the commanded operation. Device configuration registers control the operating characteristics of the MC33771C and are all programmed while the device is in NORMAL mode. Once programmed, the MC33771C performs safety operations like overvoltage and undervoltage in the background without further instruction from the pack controller¹.

To accomplish the safety operations in NORMAL mode, the MC33771C performs a cyclic conversion sequence at the programmed timed interval. In the event the MC33771C receives an on-demand conversion request from the pack controller during a cyclic conversion, the device stops the cyclic conversion and immediately starts the on-demand conversion cycle. Halting the cyclic conversion and performing the on-demand conversion allows all MC33771C devices in the system to achieve synchronized measurements. From NORMAL mode, the MC33771C may be commanded to SLEEP mode or DIAG mode. If instructed by a proper value of the SYS_CFG2[FLT_RST_CFG] field, the part automatically resets whenever the communication is absent for longer than t_{COM_LOSS} .

¹ The cyclic measurement is disabled by default. Cyclic measurement can be activated by writing to SYS_CFG1[CYCLIC_TIMER].

9.3.5 Sleep mode

SLEEP mode provides a method to significantly reduce battery current and the overall quiescent current of the battery management system. In SLEEP mode, the overvoltage, undervoltage, overtemperature, undertemperature, and overcurrent circuitry can remain cyclically active², as well as the monitoring of V_{PWR}.

Based on the CYCLIC_TIMER setting, the MC33771C may continue performing cyclic conversions in SLEEP mode. This is the meaning of the dotted bubble labeled as CYCLIC_WUP in the state diagram shown in [Figure 8](#). The permanence time in the CYCLIC_WUP transient state is really short; it is basically the time needed to turn on the VCOM power supply and to acquire 20 channels.

In the event a conversion value is greater than or less than the threshold value and the particular wake-up/fault is unmasked, the MC33771C performs a bus wake-up and can activate the FAULT pin.

To instruct the MC33771C to enter the SLEEP mode, the user sets the SYS_CFG_GLOBAL[GO2SLEEP] bit to logic 1. If the communication type is TPL, only a global write command can be used, while in case of pure SPI communication, a local write command is necessary. In case the ADCs are performing acquisition (for a single sample or an average of N samples), the transition is delayed until the ongoing sequence is completed. It means that a single sample will be correctly acquired while an average will be potentially interrupted; in this latter case MEAS_CELL registers cannot be updated (DATA_RDY bit stays at 0 until the completion of the next average).

Exit from SLEEP mode is possible if one of the following occurs:

- Upon detection of a bus wake-up sequence, in TPL mode only
- By transitioning the CSB pin from low state to high state (shortly referred to as CSB wake-up)
- Upon detection of at least one out of a certain number of fault conditions (see FAULT1_STATUS, FAULT2_STATUS and FAULT3_STATUS along with their associated wake-up mask registers WAKEUP_MASK1, WAKEUP_MASK2 and WAKEUP_MASK3)³
- Depending on the content of SYS_CFG2[FLT_RST_CFG] field, it is possible to set the OscResetEn variable to 1.
- Wake-up by GPIO0.

The CSB wake-up capability imply some system considerations when SPI communication is used. Assumed the CSB line is pulled up to the same power supply used by the MCU. When the MCU commands the MC33771C to go sleep and then the MCU itself goes to sleep, both devices sleep until the time the MCU wakes up. However, when this happens, the MC33771C wakes up, because the CSB line transitions from low state to high state. To avoid this behavior, the MCU has to take care to force the CSB line to the high state during the entire sleep time.

9.3.6 Diagnostic mode

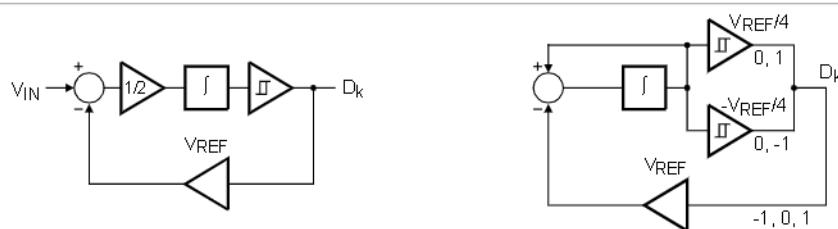
In diagnostic mode, the system controller has extended control of the MC33771C in order to execute performance integrity checks of the device. It is critical to note that when the MC33771C is in diagnostic mode, cyclic conversions are halted and OV/UV/OT/UT detection is not performed automatically. To perform OV/UV/OT/UT or any other protection feature that requires a conversion, an on-demand conversion message must be sent by the pack controller.

To prevent the MC33771C from remaining in diagnostic mode without automatic OV/UV/OT/UT detection, a protection DIAG_TIMEOUT timer has been implemented. In the event of the timeout, the MC33771C reverts to NORMAL mode and sets the bit FAULT3_STATUS[DIAG_TO_FLT] to logic 1.

² The cyclic measurement is disabled by default. Cyclic measurement can be activated by writing to SYS_CFG1[CYCLIC_TIMER].

³ The wake-up performed by MC33771C under the detection of internal fault is disabled by default. It can be activated by writing to registers WAKEUP_MASK1, WAKEUP_MASK2 and WAKEUP_MASK3.

To enter diagnostic mode, the user must set the SYS_CFG1[GO2DIAG] bit to logic 1. To exit diagnostic mode, the user must clear the GO2DIAG bit.


Note: If cyclic acquisition is enabled, before transitioning to diagnostic mode, the cyclic acquisition needs to be disabled. Disabling of cyclic acquisition and GO2DIAG should be two separate commands sent by MCU.

9.4 Analog to digital converters ADC1-A, ADC1-B, ADC2

At the heart of the MC33771C are three hybrid ADCs using a 6.0 MHz clock and having two modes of operation, called *phases*:

- Incremental phase: it is necessary to compute the most significant bits. During this first phase, the ADC operates as shown in [Figure 9](#) (left part). It appears equal to a 1st order $\Sigma\Delta$, but it has no memory, as the initial state is always 0.
- The second phase, referred to as cyclic phase, is needed to extract the least significant bits. During this phase, the converter is blind to the input (but not to the reference) and performs the conversion of the residual error.

This ADC, which is built around a switched capacitor integrator, is much faster than a $\Sigma\Delta$, an essential feature when the input comes from a multiplexer and the channel switching has to be very fast. There is no decimation downstream the ADC.

The output of the integrator V_N at the end of the incremental phase is given by:

$$V_N = \frac{N \cdot V_{IN} - V_{REF} \cdot \sum_{k=1}^N D_k}{2}$$

The integrator is updated at each cycle. The current output of the integrator, V_k , is linked to the previous one, V_{k-1} , by the following relationship.

$$V_k = 2 \cdot V_{k-1} - D_k - V_{REF}$$

aaa-027851

Figure 9. ADC converter: incremental phase (left) and cyclic phase (right)

The ADC architecture affords the user the flexibility to select the speed vs. accuracy. Conversion resolution setting for ADC1-A, ADC1-B and ADC2 are programmable from 13 to 16 bits (see [Section 11.7 "ADC configuration register – ADC_CFG"](#)). ADC1-A and ADC1-B settings must be equal to each other.

9.4.1 High precision voltage reference

To guarantee the accuracy of all ADC conversion data, the MC33771C integrates a high precision fully compensated voltage reference.

9.4.2 Measurement sequence

The MC33771C performs on-demand differential measurements of external inputs and internal measurements using three ADC converters for measurement, calibration, and diagnostics. Once the device is initialized, on-demand conversions are initiated by writing to the ADC_CFG [SOC] convert register or a GPIO2 input trigger.

The ADC_CFG register contains the conversion parameters for ADC1-A, ADC1-B, and ADC2 converters and the start conversion bit for synchronization. Writing a logic 1 to the SOC bit initiates the conversion sequence. Conversions in progress may be interrupted by reinitiating a new conversion. Measurements for each ADC

converters in the MC33771C have a predefined measuring sequence. Voltage conversions coming from ADC1-A and ADC1-B are synchronized with free running current measurements performed by ADC2.

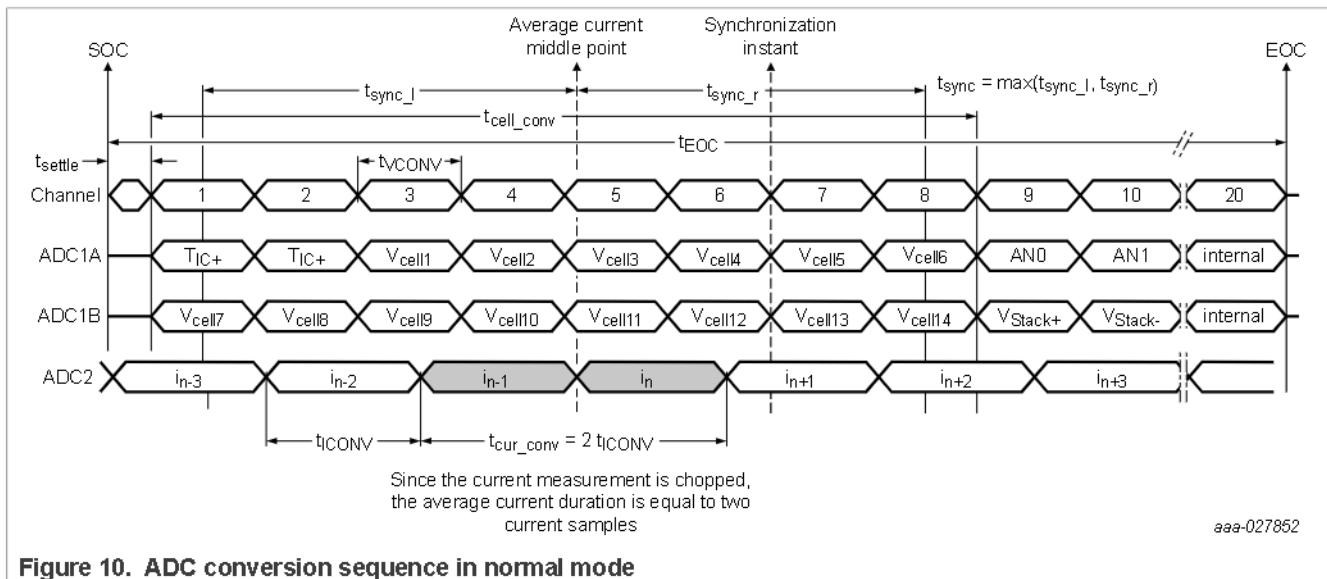


Figure 10. ADC conversion sequence in normal mode

Immediately after receipt of a conversion request, there is a dead time t_{SETTLE} , after which ADC1-A and ADC1-B converters start their conversion sequence. Voltage conversions of ADC1-A and ADC1-B run asynchronously with the current measurements performed by ADC2 as shown in [Figure 10](#).

At time t_{CELL_CONV} , all voltage and current samples are frozen and then post-elaborated. Offset is measured and canceled, a multiplicative correction with a gain depending on the IC die temperature is performed. The completion of the entire sequence, whose length is equal to 20 time slots, occurs at time t_{EOC} . All results are stored into user registers and their associated data ready bits are set to Logic 1. Channels identified as "internal" are used for calibration purposes and are performed at each conversion sequence. Information on how the data is tagged and stored is provided in [Section 10](#). On-demand conversions are not only used for storing measurement results in user registers, but also for OV/UV/OT/UT comparisons.

The MC33771C features a synchronized voltage and current measurements for each requested conversion. Synchronization point is after the 6th channel, that is, at this time the IC takes a snapshot of the latest two chopped conversions of the current signal, the average of which is calculated to get rid of the current offset.

The meaning of the time t_{SYNC} is the maximum value of two time intervals, t_{SYNC_L} and t_{SYNC_R} , where:

- t_{SYNC_L} is the time interval between the middle point of the first voltage conversion and the instant corresponding to middle point of the latest valid average current value
- t_{SYNC_R} is the time interval between the previously mentioned instant and the middle point of the eighth converted channel

In addition to on-demand conversion requests, the MC33771C provides timing control for cyclic measurements, that is, conversions occurring with no need for the pack controller to repeatedly send SOC commands. Cyclic measurements are useful for automatic OV/UV/OT/UT check. The user may select the cycle period by programming register `SYS_CFG1[CYCLIC_TIMER]`. The effective duration of a cyclic sequence is given by the t_{EOC} parameter. A cyclic sequence does not affect the content of the measurement registers (namely, of registers `MEAS_xxxx`), while it has effect on the content of `CELL_OV_FLT`, `CELL_UV_FLT`, `AN_OT_UT_FLT` and `FAULTx_STATUS` registers.

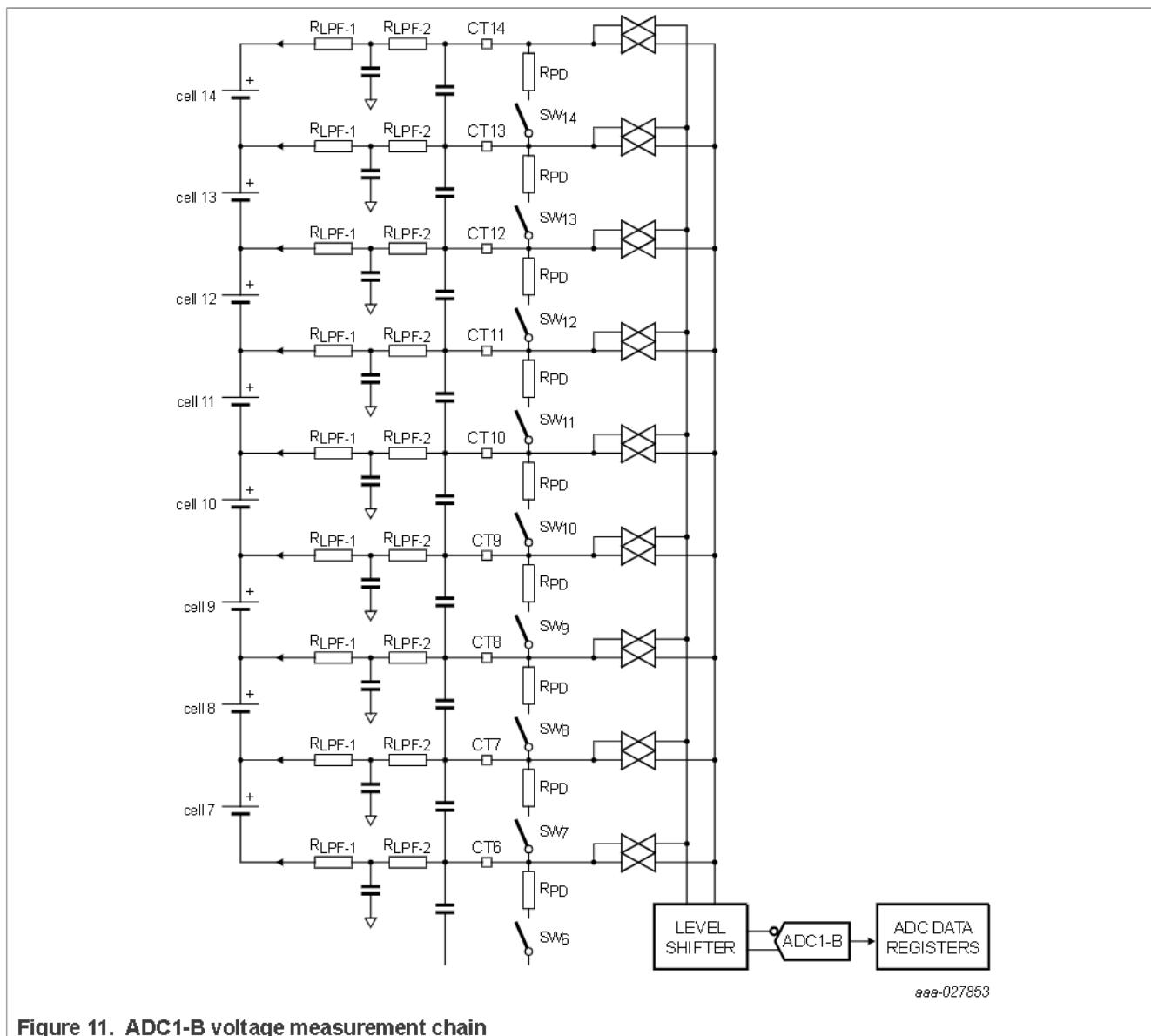
9.4.2.1 Voltage averaging

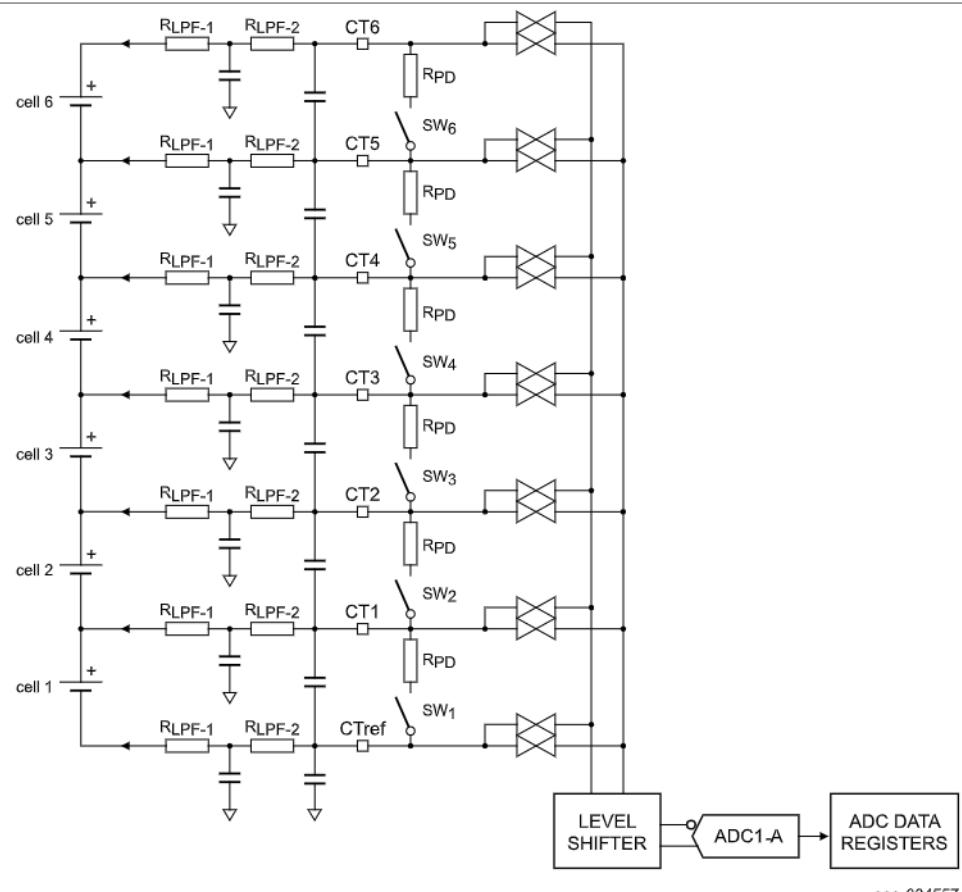
The MC33771C provides a feature of on-demand, on-chip voltage averaging. Using this feature, cell terminal voltage, Vstack voltage, and VrefA and VrefB voltages can be averaged for a configured number of samples.

Averaging makes the measurement data more robust to noise, the averaging feature acts as a digital low pass filter. The on-chip averaging feature of MC33771C reduces the MCU load by performing the averaging on-chip and also reducing the number of communication frames to be exchanged between master and slave.

After initialization of MC33771C, averaging can be triggered by configuring the ADC_CFG register as described in [Section 11.7 "ADC configuration register – ADC_CFG"](#). The number of samples to be averaged is chosen by writing to bit-field ADC_CFG[AVG] and accumulation of samples to be averaged is initiated by setting bit-field ADC_CFG[SOC] to logic 1 or by triggering GPIO2 input. Once the averaging is started the MC33771C accumulates the configured number of samples and divides the accumulated value by the number of configured samples. The final value is updated in MEAS_CELLXX registers.

Ongoing accumulation of samples can only be interrupted by the GO2SLEEP and GO2DIAG commands. However, the averaging can be restarted with a new SOC command. On reception of a new SOC command, the MC33771C discards the ongoing measurement (accumulation) and starts the new measurement. It is to be noted that the feature of voltage averaging is not available for cyclic measurement.


In NORMAL mode, during ongoing averaging the device can interrupt the voltage averaging and change its mode of operation. However, the GO2SLEEP and GO2DIAG commands have certain priority over averaging. The MC33771C performing averaging is able to transition to Sleep or Diagnostic mode on reception of a valid GO2SLEEP or GO2DIAG command but only after completion of the ongoing sequence of measurement.


9.5 Cell terminal voltage measurement

Cell terminal voltages are monitored differentially, level shifted and multiplexed to the ADC1-A and ADC1-B converters. Conversion results of the cells are available in MEAS_CELLx registers.

Unused cell terminal (CTx) inputs may be terminated as shown in [Figure 1](#) or as described in [Section 13.2.2 "Unused cells"](#). Overvoltage and undervoltage of unused inputs should be disabled through the OV_UV_EN[CTx_OVUV_EN] bits to prevent the input from triggering fault events. Conversions performed on unused inputs result in nearly zero ADC values.

The differential measurement of each cell terminal input is designed to function in conjunction with external anti-aliasing filter (see [Section 13.2 "MC33771C External Components"](#)).

aaa-034557

Figure 12. ADC1-A voltage measurement chain

9.6 Current measurement

Current measurement channel features 16-bit ADC with an automatic programmable gain amplifier (PGA) allowing the user to accurately measure current from -1500 A to 1500 A (the actual range is in terms of voltage and is given by min and max of V_{IND}) with a 6.0 mA resolution (in terms of voltage it is V_{2RES}) when using a single 100 $\mu\Omega$ shunt resistor. The current channel includes automatic gain selection, redundant measurement path, and internal diagnostics.

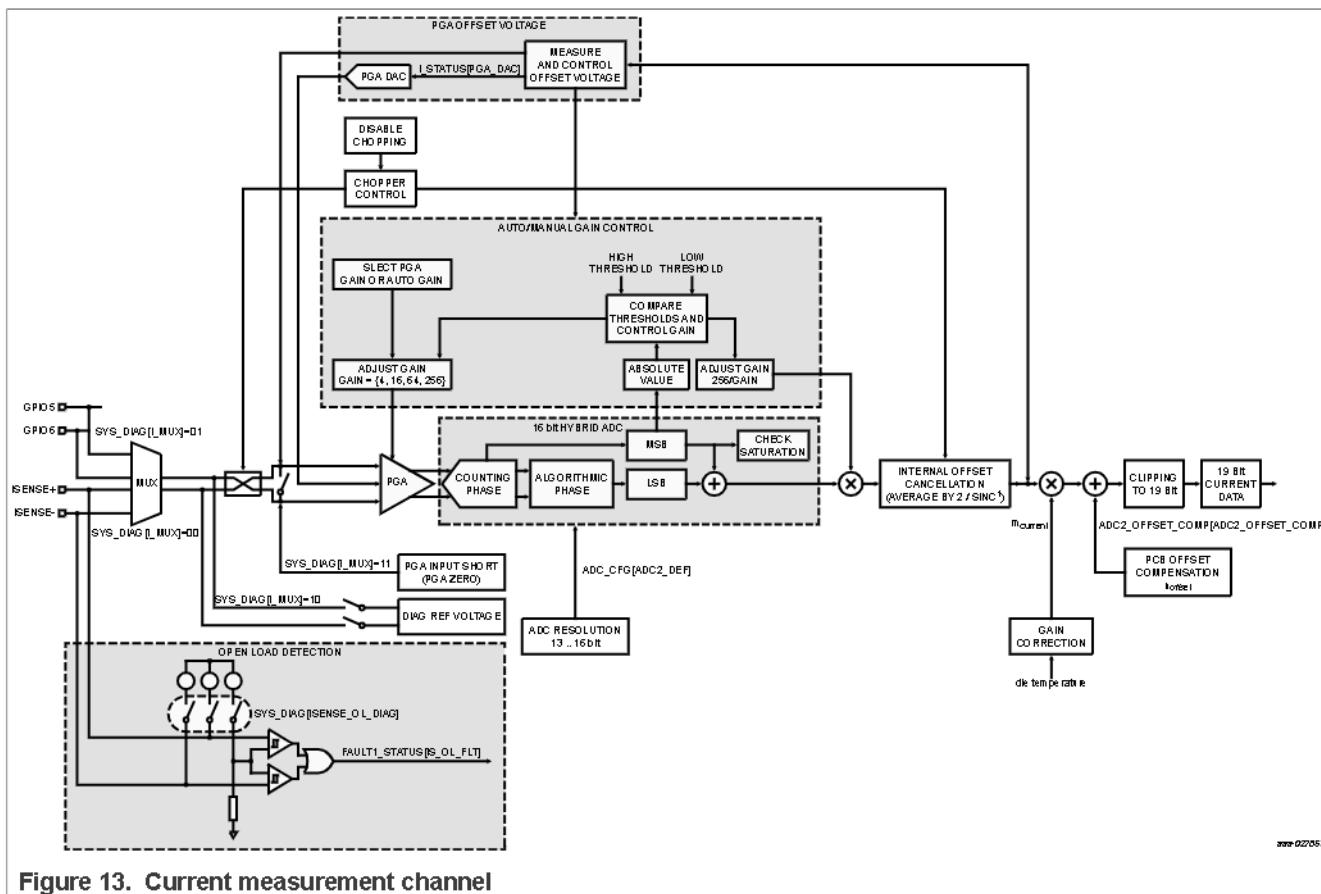


Figure 13. Current measurement channel

From initialization, the current measurement chain is disabled. The MCU controller must enable the measurement chain by setting the `SYS_CFG1[I_MEAS_EN]` bit to logic 1, to initiate continuous current conversions. Current measurement conversions for coulomb counting are performed continuously in normal and diagnostic modes, while in sleep mode they occur periodically and the period is given by `SYS_CFG1[CYCLIC_TIMER]`.

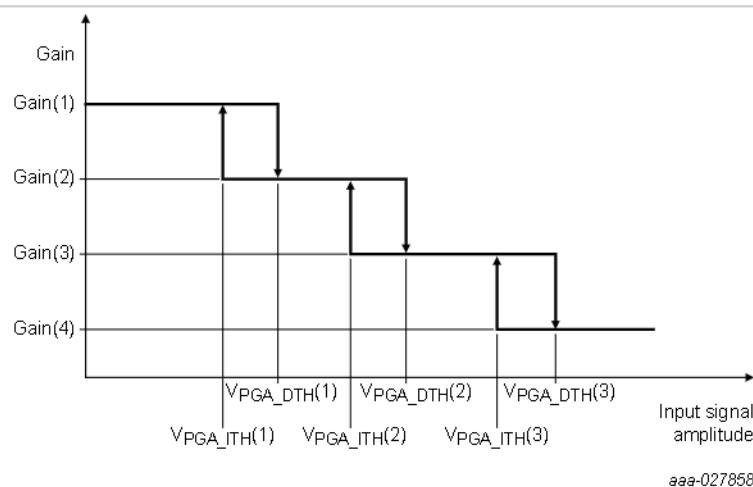
Note: The conversion command `ADC_CFG[SOC]` must be sent at least $27\ \mu\text{s}$ after `SYS_CFG1[I_MEAS_EN]` is enabled.

The Current Acquisition Channel fulfills accuracy and dynamic range requirement through:

- The Auto-Zero Compensation feature is guaranteeing the PGA dynamic range.
- A chopper function is ensuring a reduced offset introduced by the acquisition Chain.

The automatic auto-zero compensation for the PGA is performed each time the current measurement channel gets enabled. The time to perform the procedure is given by the parameter t_{AZC_SETTLE} .

To minimize the offset introduced by the acquisition chain, the chopper sends alternatively and repetitively, the ISENSE+/- differential inputs and the ISENSE-/+ differential inputs (reverse input pair) to the PGA differential inputs. Downstream the ADC2, a digital post-processor computes the difference between the current sample and the past sample and divided it by 2. Therefore, the offset introduced by the acquisition chain is cancelled.


Conversion result of current channel will be stored into `MEAS_ISENSE1[MEAS_I_MSB]` and `MEAS_ISENSE2[MEAS_I_LSB]` with a resolution of V_{2RES} , which remains the same regardless of the PGA Gain setting.

Note: A conversion started with an `ADC_CFG[AVG]` bit-field set to a non-zero value would result in the toggling of `MEAS_ISENSE1[DATA_RDY]` and `MEAS_ISENSE2[DATA_RDY]` between 0 and 1 for each voltage

measurement sequence, unless the configured number of sequences are completed. At the end of averaging, the bit MEAS_ISENSE_X[DATA_RDY] is stable at the end of last sequence.

The PGA gain of the current acquisition channel (4, 16, 64, 256) can either be set in a manual or an automatic mode. The setting of the PGA gain in manual or automatic mode can be performed by configuring ADC_CFG[PGA_GAIN] register.

The setting of the PGA gain in automatic mode will also be performed by the automatic gain control. Automatic gain control allows the device to obtain the most appropriate gain setting for the amplifier input signal level. In automatic gain control mode, the conversion result is digitally compared with internally programmed thresholds. See [Figure 14](#).

Figure 14. Current measurement channel (gain vs. input signal amplitude)

PGA auto-gain is implemented by applying a hysteresis to each threshold. Saturation of the ADC is reported by the flag MEAS_ISENSE2[ADC2_SAT]. A PGA setting change between two chopped measurements is reported by the flag MEAS_ISENSE2[PGA_GCHANGE] to indicate reduced accuracy for the resulting measurement value. An external low-pass filter is required to prevent an over range event within the PGA. Such event may happen if the time derivative of the current signal is so high that it causes the voltage drop across the ISENSE +/- terminals to exceed the maximum allowed slope value of ± 4 V/s. The way this limit on the slope has to be understood is the following: if the battery current changes like a large ideal step, the output signal of the input filter must have a slope whose absolute value must not exceed the aforementioned value. So, this limit only applies to large signals, that is, it does not apply, for example, to a sinusoidal current signal having small amplitude but very large frequency, because a small signal normally does not require a change in the gain value. Large signal signifies that the signal magnitude is so high that the PGA gain is required to be switched to a value different from the currently used one.

ADC2, dedicated to the current measurement channel, performs continuous conversions in normal and diagnostic modes. Receiving an on-demand conversion request, the most recent current measurement obtained before the last cell voltage gets converted is stored in MEAS_ISENSE1 and MEAS_ISENSE2 registers, so synchronizing the current with all voltages within the t_{SYNC} window.

The current measurement channel includes a sleep mode wake-up feature. In sleep mode, the PGA gain is constantly equal to 256 and each cyclic current measurement result is compared with the current wake-up threshold TH_ISENSE_OC register. Three out of four current values above the threshold trigger a system wake-up and activate the fault output when the wake-up enable bit is set.

9.7 Coulomb counting

All conversions of ADC2 increment the internal coulomb counter, referred to as COULOMB_CNT, which represents the discrete integral of ADC2 samples, where the time index can only take positive integer values. COULOMB_CNT is copied to registers COULOMB_CNT1, COULOMB_CNT2. In addition to this, the MC33771C provides the number of accumulated samples in register CC_NB_SAMPLES, which represents the elapsed time expressed in integer units. The coulomb counter registers COULOMB_CNT1, COULOMB_CNT2 and CC_NB_SAMPLES are reset by writing the ADC_CFG[CC_RST] reset bit.

The registers CC_NB_SAMPLES/COULOMB_CNT1/COULOMB_CNT2 are updated if a write command has been done on one of these 3 registers (updated at next read) or if a read/write command has been done on another register (updated at next read). If the 3 registers are read in loop without any write or read command on other registers, their values are not updated.

In the event an overflow occurs in either COULOMB_CNT or CC_NB_SAMPLES, the CC_OVR_FLT bit is set and, when unmasked, the FAULT pin is activated. The coulomb count value is impacted by conversions performed during diagnosis of the current measurement chain.

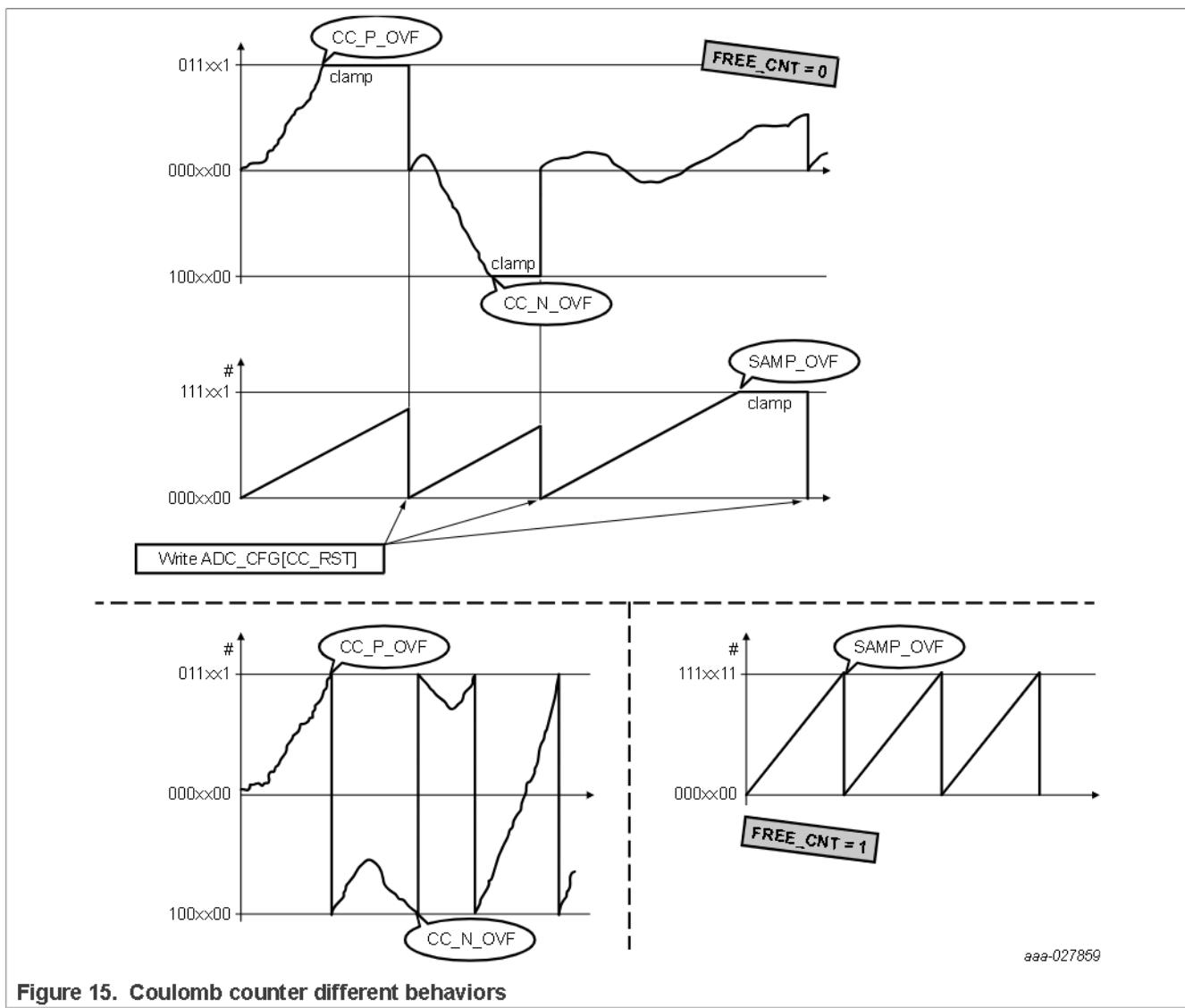


Figure 15. Coulomb counter different behaviors

The COULOMB_CNT is an integer whose associated resolution is V_{2RES} , therefore, $COULOMB_CNT \cdot V_{2RES}$ gives μV . If the shunt resistance R_{SHUNT} is expressed in $\mu\Omega$, then $COULOMB_CNT \cdot V_{2RES} / R_{SHUNT}$ gives A.

The coulomb counting feature allows the pack controller to compute the average current. Value of R_{SHUNT} is only owned by the pack controller. By assuming two snapshots of the above mentioned registers are taken at two consecutive times T_{k-1} and T_k , the ratio $lav_k = (ACC_k - ACC_{k-1}) / (N_k - N_{k-1})$ provides the average value of the current during the time interval $(T_k - T_{k-1})$, where ACC_k and ACC_{k-1} are the values of the quantity $COULOMB_CNT \cdot V_{2RES} / R_{SHUNT}$ respectively at times T_k and T_{k-1} , and N_k and N_{k-1} are the values of CC_NB_SAMPLES corresponding to the same two instants. To get an electric charge, the pack controller needs to multiply the ratio lav_k by $(T_k - T_{k-1})$ to get an electric charge.

Reading one of the three user registers (COULOMB_CNT1, COULOMB_CNT2, CC_NB_SAMPLES) triggers the MC33771C to copy the content of the coulomb counter internal registers into these three user registers. The content of the coulomb counter user registers is updated only when an address different from \$2D, \$2E, and \$2F is read, and then one or more of the registers (COULOMB_CNT1, COULOMB_CNT2, CC_NB_SAMPLES) are read again.

It is important to reset the entire coulomb counter status each time the type of input source is changed. In fact, the coulomb counter integrates not only the current signal, but also other possible diagnostic inputs.

If the bit ADC2_OFFSET_COMP[CC_RST_CFG] is set to logic 1, reading any coulomb counter register (from @ \$2D to @ \$2F) also resets the coulomb counter.

The coulomb counter can behave in two different ways: clamping mode (by setting ADC2_OFFSET_COMP[FREE_CNT] = 0) and rollover mode (by setting ADC2_OFFSET_COMP[FREE_CNT] = 1): see [Figure 15](#).

Flags ADC2_OFFSET_COMP[CC_P_OVF] and ADC2_OFFSET_COMP[CC_N_OVF] respectively signal an occurred overflow or an occurred underflow in the coulomb counter accumulator; they can be reset to zero by writing a logic 0 in those bits.

The flag ADC2_OFFSET_COMP[SAMP_OVF] signals an occurred overflow of the number of samples. It can be reset to zero by writing a Logic 0 in it. Any kind of occurring overflow is reflected in the content of the FAULT3_STATUS[CC_OVR_FLT] bit as well.

If ADC2 is enabled (SYS_CFG1[I_MEAS_EN] = 1) AND cyclic measurement is active (SYS_CFG1[CYCLIC_TIMER] ≠ 0), the coulomb counter is calculated also in sleep mode. If so, each time the device is entering into Cyclic Wake-Up mode at the period equal of the cyclic timer configured according to SYS_CFG1[CYCLIC_TIMER], the current will be measured, with PGA gain set to 256, and integrated in the Coulomb Counter. The number of samples accumulated in the Coulomb Counter will also be incremented by 1.

If any fault condition occurs by these operations, depending on the fault and wake-up mask configuration, the device is awakened and the fault line is activated, including the case where the coulomb counter crosses the threshold TH_COULOMB_CNT, which is specific to sleep mode and produces the setting of both ADC2_OFFSET_COMP[CC_OVT] and FAULT3_STATUS[CC_OVR_FLT] bits.

When the device transitions from sleep mode to normal mode, the coulomb counter is frozen until it is read and reset by the user, and the acquisition speed is turned from the configured one (by the cyclic timer SYS_CFG1[CYCLIC_TIMER]) to continuous.

TYPE A (free running mode with explicit reset):

CONFIGURATION instructions:

1. SYS_CFG1[IMEAS_EN] = 1; //Enable the current measurement
2. ADC2_OFFSET_COMP[FREE_CNT] = 1; // Select the free running mode
3. ADC2_OFFSET_COMP[CC_RST_CFG] = 0; // Do not reset to zero upon read:

RESET instructions:

1. write ADC_CFG[CC_RST] = 1; //Reset to zero;
2. COULOMB_CNT = COULOMB_CNT_old = CC_NB_SAMPLES_old = Time = Time_old = 0; // Variables initialization

NORMAL USE instructions:

1. Time = get_abs_time(); // get the absolute time
2. Read registers COULOMB_CNT1, COULOMB_CNT2 and CC_NB_SAMPLES;
3. COULOMB_CNT = (COULOMB_CNT1, COULOMB_CNT2); // concatenate MSB and LSB
4. I_AVG = (COULOMB_CNT - COULOMB_CNT_old)/(CC_NB_SAMPLES - CC_NB_SAMPLES_old); // this is average current
5. DELTA_Q = I_AVG * (Time - Time_old); // this delta charge may be accumulated in a different variable
6. COULOMB_CNT_old = COULOMB_CNT;
7. CC_NB_SAMPLES_old = CC_NB_SAMPLES;
8. Time_old = Time;
9. Read any register different from COULOMB_CNT1, COULOMB_CNT2 and CC_NB_SAMPLES
10. Jump to step 1

TYPE B (free running mode with implicit reset):

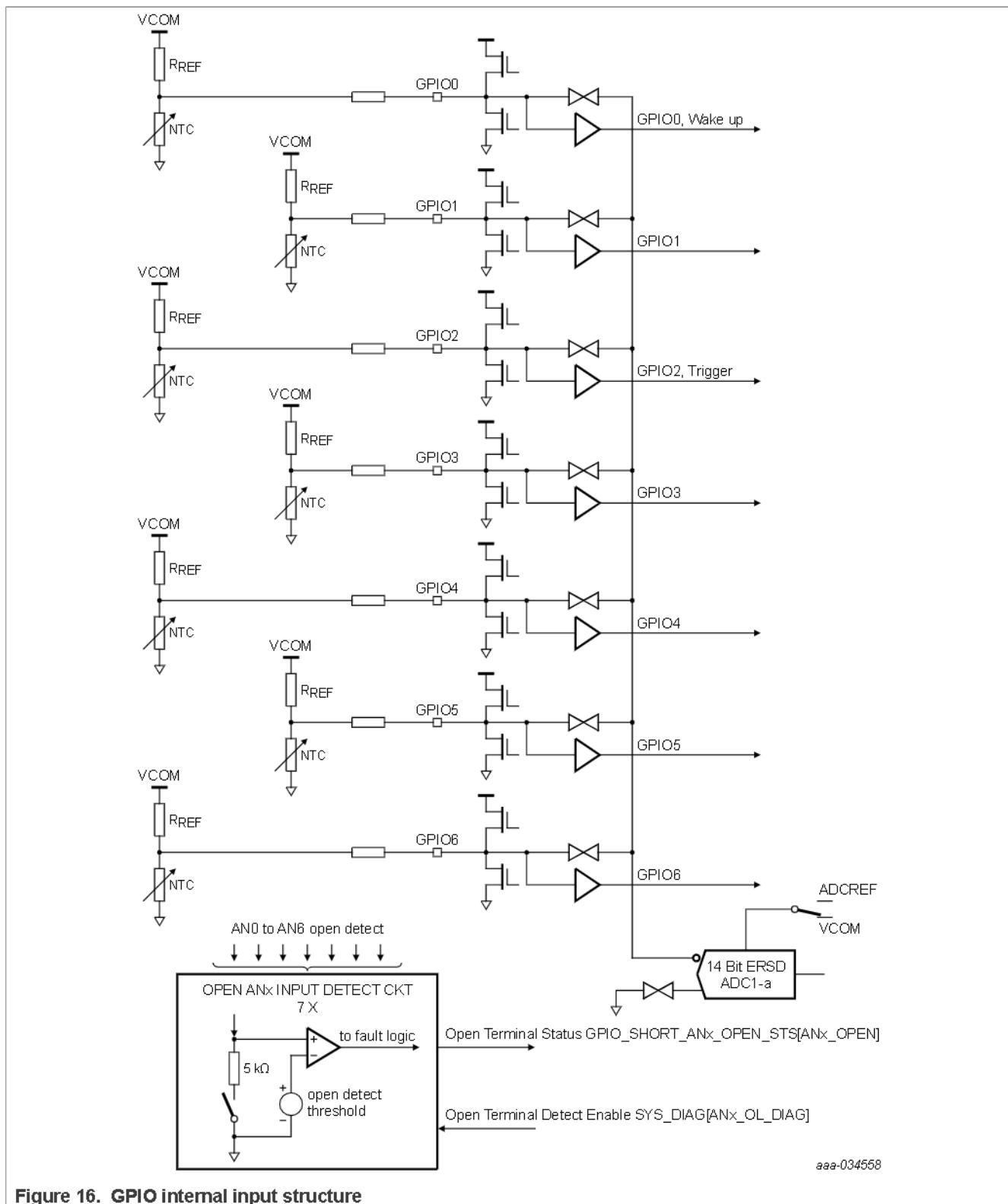
CONFIGURATION instructions:

1. SYS_CFG1[IMEAS_EN] = 1; // Enable the current measurement
2. ADC2_OFFSET_COMP[FREE_CNT] = 1; // Select the free running mode
3. ADC2_OFFSET_COMP[CC_RST_CFG] = 1; // Reset to zero upon read:

RESET instructions:

1. ADC_CFG[CC_RST] = 1; // Reset to zero
2. Time = Time_old = 0; // Variables initialization

NORMAL USE instructions:


1. Time = get_abs_time(); // get the absolute time
2. Read registers COULOMB_CNT1, COULOMB_CNT2 and CC_NB_SAMPLES;
3. COULOMB_CNT = (COULOMB_CNT1, COULOMB_CNT2); // concatenate MSB and LSB
4. I_AVG = COULOMB_CNT/CC_NB_SAMPLES; // this is average current
5. DELTA_Q = I_AVG *(Time-Time_old); // this delta charge may be accumulated in a different variable
6. Time_old = Time;
7. Read any register different from COULOMB_CNT1, COULOMB_CNT2 and CC_NB_SAMPLES
8. Jump to step 1

9.8 GPIOx port control and diagnostics

For user flexibility, the MC33771C has seven GPIO to support voltage measurements referenced to GND - typically coming from NTC based circuits used to extract temperature information, e.g. that of cells - or to drive external circuits. All GPIOs may be individually configured as digital inputs or output ports, wake-up inputs, convert trigger inputs, ratiometric analog inputs with reference to VCOM, or analog inputs with absolute measurements. With the exception of the GPIO0, no external voltage must be applied on GPIOx pins when the device is off or in SLEEP mode.

Table 12. GPIO port configurations

GPIO port	GPIO			Anx		ISENSE (diagnostic mode only)
	Standard GPIO	Wup and daisy chain	Convert trigger	Absolute	Ratiometric	
0	x	x		x	x	
1	x			x	x	
2	x		x	x	x	
3	x			x	x	
4	x			x	x	
5	x			x	x	x
6	x			x	x	x

9.8.1 GPIOx used as digital I/O

Setting the GPIO_CFG1[GPIOx_CFG] bits to 10 or 11 configures the specific port as an input or output. Pins configured as outputs are driven high or low by writing to the GPIO_CFG2 register. Status of the ports, regardless of the digital configuration, is provided in the GPIO_STS register, which is a feedback of the actually commanded output.

Ports configured as GPIO outputs are diagnosed by the MC33771C. An output state GPIO_STS[GPIOx_ST], which is opposite of the commanded state GPIO_CFG2[GPIOx_DR], is considered to be shorted. Each short fault bit GPIO_SHORT_ANx_OPEN_STS[GPIOx_SH] associated with each GPIOx is OR wired to the FAULT2_STATUS[GPIO_SHORT_FLT] bit. Each GPIO_SHORT_ANx_OPEN_STS[GPIOx_SH] bit when unmasked activates the FAULT pin.

9.8.2 GPIO0 used as wake-up input or fault pin activation input

Setting the GPIO_CFG1[GPIO0_CFG] bits to 10 is used to configure a GPIO0 port as an input. To program GPIO0 as wake-up input, the user must set the GPIO_CFG2[GPIO0_WU] bit to logic 1. In this case, the device performs a wake-up on the rising or falling edge.

By setting the GPIO_CFG2[GPIO0_FLT_ACT] to logic 1, the GPIO0 port may be used to activate the FAULT pin in normal, sleep, and diagnostic modes of operation. This feature allows the user to daisy chain the FAULT pin in high-voltage battery pack applications.

9.8.3 FAULT pin daisy chain operation

The FAULT pin may be programmed to provide the battery management system with a diagnostic feedback. Two behaviors are possible. One is based on logic levels: low level indicates normal condition, high level reveals a faulty condition. The other possibility is based on the heartbeat signal, a periodic signal generated by the IC to indicate normal operation, which provides a higher integrity level.

Both modes can be activated in NORMAL mode, SLEEP mode, and diagnostic mode. The fault pin, carrying the diagnostic signal, is daisy chained to the next lower MC33771C GPIO0 port. Each MC33771C device is programmed to pass the heartbeat through to the neighboring device in the system. In this configuration, any fault that the MC33771C can automatically detect may activate the FAULT line.

To configure the MC33771C for daisy chain fault output:

1. Set GPIO0 as an input GPIO0_CFG = 10.
2. Disable wake-up on GPIO0 with GPIO0_WU = 0.
3. Set GPIO0 to propagate signal to FAULT pin with GPIO_CFG2[GPIO0_FLT_ACT] = 1.

To use the MC33771C heartbeat feature, the user must write a 1 in the SYS_CFG1[FAULT_WAVE] bit. The signaling square wave has constant on time, whereas the desired off time may be selected by writing a proper value in the SYS_CFG1[WAVE_DC_BITx] configuration field.

The usage of the fault pin is essential if the IC uses SPI communication and must provide some monitoring functionality in SLEEP mode. In such use case the fault line is the only means to alert the system controller about an occurred fault, while in TPL mode, even if the IC is sleeping, it has the chance to send a wake-up signal through the bus. The fault line usage is optional in NORMAL and diagnostic modes, as well as in SLEEP mode and TPL configuration.

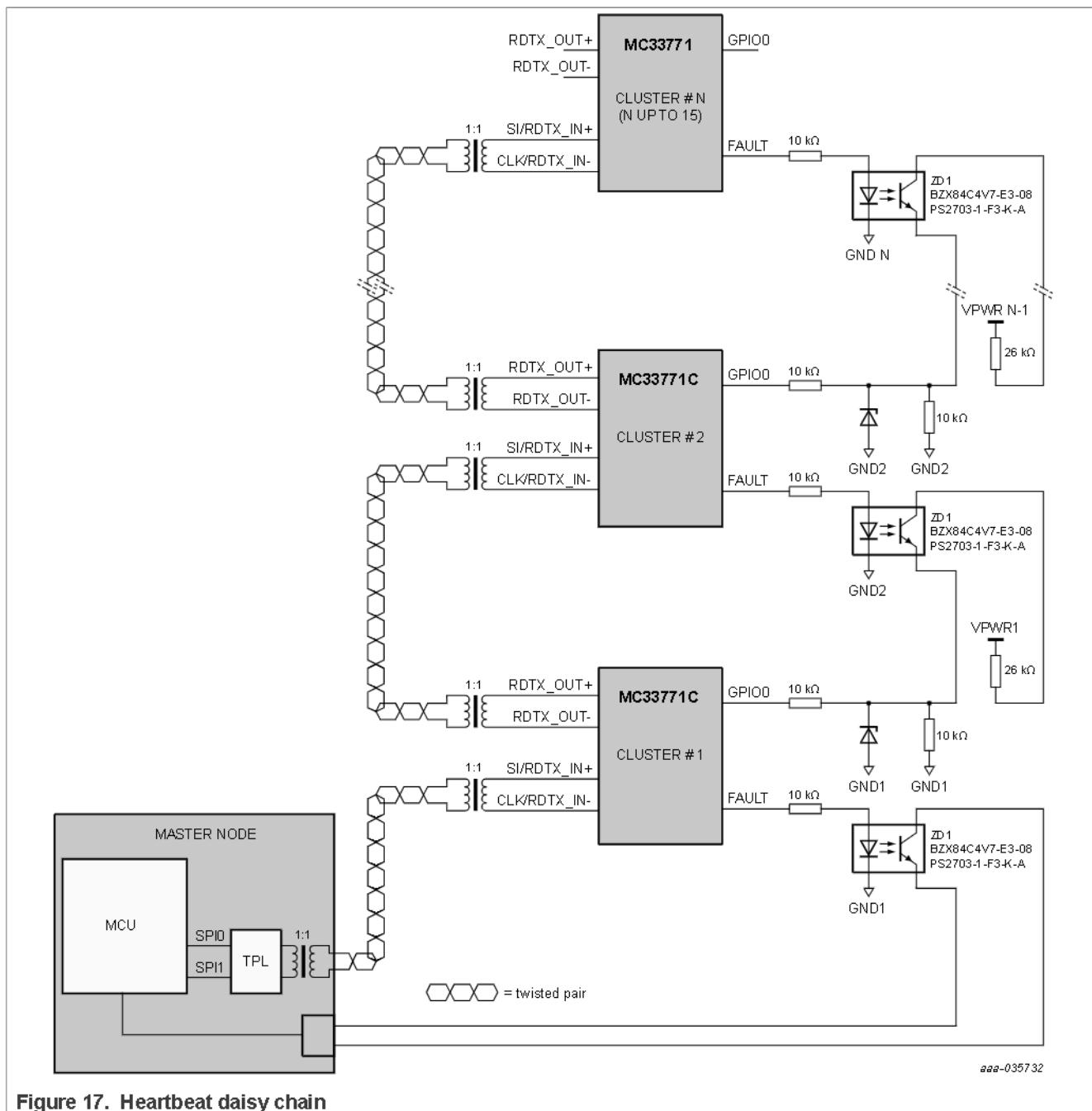


Figure 17. Heartbeat daisy chain

9.8.4 GPIO2 used as ADC trigger

The MC33771C provides a convenient method to trigger an ADC conversion from an external digital source. To use GPIO2 as an ADC trigger, configure the port as a digital input through the setting `GPIO_CFG1[GPIO2_CFG] = 10` and enable the trigger through the setting `GPIO_CFG2[GPIO2_SOC] = 1`. With the port configured, positive edge events on `GPIO_CFG2[GPIO2_SOC]` triggers a start of conversion sequence.

With a GPIO2 trigger, the converter operates as programmed in the `ADC_CFG[SOC]` bit. The GPIO2 convert trigger feature is not available in sleep mode.

9.8.5 GPIOx used as analog

Setting the GPIO_CFG1[GPIOx_CFG] bits to 00 or 01 configures the specific port as an analog ratiometric input or single ended. GPIOs configured as analog inputs are usually used for temperature measurement. The MC33771C may be programmed to detect overtemperature and undertemperature.

To detect overtemperature and undertemperature, the generated digital value is compared to an individually programmed threshold in the TH_ANx_OT and TH_ANx_UT registers. Any ADC1-A result that exceeds the threshold, on any temperature measurement input, activates the FAULT1_STATUS[AN_OT_FLT,AN_UT_FLT] bit. The conversion results for the analog inputs are available in MEAS_ANx register for the pack controller to read.

9.8.6 GPIO5, GPIO6 used as ISENSE

To use GPIO5 and GPIO6 as inputs to the current sense PGA, the MC33771C must be in diagnostic mode. As a secondary method of measuring current for functional verification, the user may connect input ports 5 and 6 as inputs to the positive and negative inputs of the PGA, that is, GPIO5 plays the role of ISENSE+ and GPIO6 plays the role of ISENSE-.

Customers using GPIO5 and GPIO6 as a secondary current measurement in diagnostic mode must command GPIO5 and GPIO6 to digital inputs by setting GPIO_CFG1[GPIO5_CFG] = 10 and GPIO_CFG1[GPIO6_CFG] = 10.

9.9 Cell balance control

The MC33771C features fully protected integrated cell balancing drivers with fault diagnostics. The cell balancing feature is active in normal, sleep and diagnostic modes. The MC33771C contains registers to control and monitor cell balance drivers and cell balance fault status.

The SYS_CFG1 register contains the CB_DRVEN bit. The CB_DRVEN bit must be enabled for any of the drivers to be activated. All drivers are disabled when CB_DRVEN bit is logic 0. For cell balance drivers to be active, both the SYS_CFG1[CB_DRVEN] and the CBx_CFG[CB_EN] bits must be set to logic 1.

The individual cell balance timer is set through the CBx_CFG[CB_TIMER]. Timing parameters can be found in the register map of this specification. Each time the cell balance CBx_CFG[CB_TIMER] bit is written by the MCU controller, the MC33771C initiates the cell balance timer. It is important to explicitly mention, each time the CB_DRVEN bit is set to logic 0, then cell balancing timers get reset to 0 (the CBx_CFG[CB_TIMER] bits are unchanged) and all cell balancing MOSFETs are turned off. Before the CB_DRVEN bit is set again to logic 1, all CBx_CFG registers need to be configured again. Otherwise, a cell balancing sequence will be started with the previous settings.

The SYS_CFG1 register contains the CB_MANUAL_PAUSE bit, which, if set to logic 1, instructs the MC33771C to disable the cell balance switches. When the CB_MANUAL_PAUSE bit is set again to logic 0, the cell balance switches are restored according to the programming. However, the cell balance timers are not frozen during a manual pause. The contents of CBx_CFG[CB_TIMER] and ADC2_OFFSET_COMP[ALLCBOFF ON SHORT] bits must not be changed while balancing.

It is not recommended to perform any cell measurement when cell balancing switches are activated, for two main reasons:

- 1) During SLEEP mode, when cell balancing switches are ON, additional leakage current can be generated by the cell balancing activation which may cause a cell voltage measurement error.
- 2) The parasitic resistance on the cell terminal connections may also lead to a cell voltage measurement error which depends on the value of the CT parasitic resistance and on the cell balancing current.

In addition, due to the input cell low pass filter, it is required to wait a certain amount of time after opening the cell balancing switches before performing an accurate cell measurement sequence. This time depends on the

input cell filter used. For the cell input filter described in [Table 88](#), the waiting time recommended is 3ms. For similar reasons, it is also recommended to disable cyclic acquisitions when cell balancing is active to avoid false cell OV/UV fault detections. These recommendations are valid when the IC is in NORMAL mode or SLEEP mode.

9.10 Internal IC temperature

Internal temperature measurement is completed automatically during each ADC conversion sequence. The MEAS_IC_TEMP register containing the IC temperature measurement may be read at any time by the pack controller. Resolution of MEAS_IC_TEMP is 32 mK/LSB.

9.11 Internal temperature fault

In addition to the digital temperature measurement register, the MC33771C is equipped with a silicon overtemperature thermal shutdown (TSD). In the event the silicon thermal shutdown is activated in normal mode, the MC33771C halts all monitoring operations and enters a low-power state with the FAULT pin activated. When the die temperature returns to normal, the MC33771C resumes operation in normal mode.

In the event of an internal TSD:

1. Conversion sequence is aborted and the MC33771C stops converting.
2. The FAULT2_STATUS[IC_TSD_FLT] bit is set to logic 1, implying a FAULT pin activation.
3. VCOM and VANA are in shut down, communication gets blocked.
4. All cell balance switches are disabled and CB_DRVEN cleared.

When the die temperature returns to normal level, the MC33771C resumes to Init mode. Therefore, the user shall provide the device with an address and proper parameters again.

Overtemperature TSD events are also detected while the MC33771C is in sleep mode during cyclic measurements. TSD events detected during the sleep mode cyclic measurement force the MC33771C to set the IC_TSD_FLT bit and activate the FAULT pin while remaining in sleep mode. When the MC33771C returns to normal operating temperature it transfers to normal mode and initiates a wake-up sequence on the bus.

9.12 Storage of parameters in an optional EEPROM

NXP provides parts with optimal calibration values. Standard parameters are stored in a read only memory called *fuses cell array*. It is typically neither necessary nor advised to change the standard values. Nevertheless, sometimes this might be required. An example is adjusting the gain calibration of the current channel to take into account the behavior of the external shunt resistor, due to the temperature coefficient and individual resistance deviation from the nominal value. New gains may be determined in normal mode and then stored in an external EEPROM. In such cases, EEPROM calibration parameters must be programmed at the manufacturer's assembly and final test.

If the MC33771C is linked to an EEPROM, the latter device is automatically recognized, provided the address \$00 of the EEPROM contains the proper one byte key value, namely \$CB hex. To program the EEPROM with calibration parameters, the user's final test and assembly must write to the EEPROM_CTRL register, providing address and data in EEPROM_CTRL[EEPROM_ADD] and EEPROM_CTRL[DATA_TO_WRITE] fields, with the EEPROM_CTRL[RW] bit set to logic 0. The user must simply send the write command with the EEPROM address and data to be written, and set the write bit to logic 0. The MC33771C automatically writes the data to the given EEPROM address. To read data from the EEPROM, the user has to first write to the EEPROM_CTRL register, providing the address in EEPROM_CTRL[EEPROM_ADD] field, with the EEPROM_CTRL[RW] bit set to logic 1, then read in the same register to get the data in EEPROM_CTRL[READ_DATA] field.

Each time the part experiences a power up or reset event, an internal RW memory, which is referred to as *mirror memory*, is first of all uploaded with the value of the fuses cell array. The content of such memory is propagated to the applicative part of the chip. All calibration values, before being used in the IC, are protected

by an ECC (Error correction code). But if an EEPROM is recognized, the mirror registers bank, in which the content of the fuses memory was stored at the very beginning of the initialization process (transparent to the user), gets automatically reloaded with the content of the EEPROM.

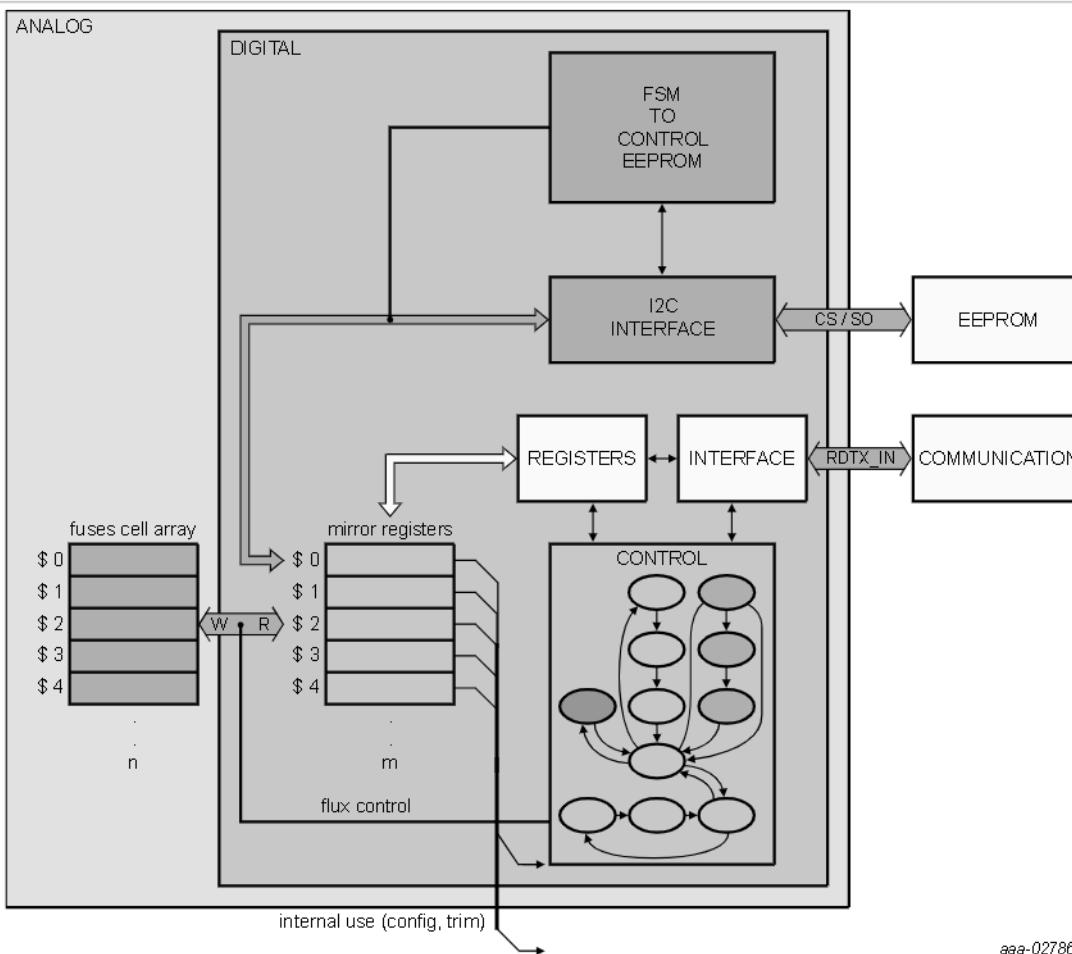


Figure 18. Memories

The space of EEPROM-addresses and the space of mirror-addresses correlate to each other. Mirror data are organized in 16-bit words, while the data of the EEPROM have been thought as bytes. As at EEPROM-address \$00 there is the key value, the first calibration byte of the EEPROM must have EEPROM-address \$01 and corresponds to the most significant byte of the mirror word having mirror-address \$00. The second calibration byte of the EEPROM must have EEPROM-address \$02 and corresponds to the least significant byte of the mirror word still having mirror-address \$00, and so on.

This can be seen in [Table 14](#). The columns labeled as "Gain comp.?" and "by ..." show if the input signals are gain compensated (yes/no) and by which gain. For instance, GCF_c1 stays for a gain, which may be calculated by using GCF_room_c1, GCF_hot_c1 and GCF_cold_c1 variables specified in [Table 87](#). In this table, attributes "cold" and "hot" refer to -40°C and 89°C respectively, and attribute room refers to 25°C . A gain may or may not depend on the temperature (column 'Temp. comp.?' may attain the value yes or no). If a gain depends on the IC temperature, there are three scalar gains. For instance: gain_cold_a, acq_gain_a, gain_hot_a represent respectively the delta gain compensation values at cold (-40°C) vs room, room ($+25^{\circ}\text{C}$) and the delta gain compensation values at hot ($+89^{\circ}\text{C}$) vs. room temperature of the die. They are used to calculate, by delta gain compensation, the actual value of gain at any temperature.

ADC2 works with GCF_ix ($x = 4, 16, 64, 256$), depending on the current gain used by the PGA. See [Table 87](#). The value of a gain is centered on the unity, so it is of the form $1 + DG$. Therefore, DG is centered on zero and is represented in two's complement. In the IC, only the DG part of the gain needs to be stored. See [Table 13](#).

Even if the most typical usage of the EEPROM is as storage of gains, nothing prevents the user to use it as a generic information storage. If this is the case, the first portion of the EEPROM has to be reserved to the copy of all gains, even if this is identical to the content of the fuse memory.

Table 13. Gain format

Gain = 1 + DG (DG)	Representation: 2's complement (number of bits)	Min (%)	Max (%)	Resolution (%)
GCF_room_cx (odd cell)	10	-6.2500	6.2378	0.01221
GFC_room_c(x+1)vs(x) (even cell vs odd cell)	4 for $x = 1$ 2 for $x \neq 1$	-0.098 for $x = 1$ -0.024 for $x \neq 1$	0.085 for $x = 1$ 0.012 for $x \neq 1$	0.01221
GFC_cold_cx (odd cell) (cold temp vs room)	7 for $x = 1$ 6 for $x \neq 1$	-0.781 for $x = 1$ -0.391 for $x \neq 1$	0.769 for $x = 1$ 0.378 for $x \neq 1$	0.01221
GFC_cold_c(x+1)vs(x) (even cell vs odd cell)	6 for $x = 1$ 2 for $x \neq 1$	-0.391 for $x = 1$ -0.024 for $x \neq 1$	0.378 for $x = 1$ 0.012 for $x \neq 1$	0.01221
GFC_hot_cx (odd cell) (hot temp vs room)	7 for $x = 1$ 6 for $x \neq 1$	-0.781 for $x = 1$ -0.391 for $x \neq 1$	-0.769 for $x = 1$ -0.378 for $x \neq 1$	0.01221
GFC_hot_c(x+1)vs(x) (even cell vs odd cell)	5 for $x = 1$ 3 for $x \neq 1$	-0.195 for $x = 1$ -0.049 for $x \neq 1$	0.183 for $x = 1$ 0.037 for $x \neq 1$	0.01221
GFC_Vbgtj1-2 (diagnostic voltage reference) ^[1]	8	-3.1250	3.1006	0.02441
GFC_i4-256 (current)	9	-25.0000	24.9023	0.09766
GFC_stack (Stack voltage)	7	-3.1250	3.0762	0.04883
GCF_ANx_ratio (ANx ratio)	5	-1.5625	1.4648	0.09766
GCF_IcTemp (IC temperature)	4	-3.1250	2.7344	0.39063

[1] This gain compensation factor is relative to GCF_c1.

Table 14. Gain compensation

Measured channel	No.	Offset comp.?	Gain comp.?	By...	Temp. comp. ?	Result stored in...	...checked by...	... in the range of
By ADC1-A								
ICTEMP1	1	Chopper	Yes	GCF_IcTemp	No	MEAS_IC_TEMP	N/A	N/A
ICTEMP1	2	Chopper	Yes	GCF_IcTemp	No	MEAS_IC_TEMP	N/A	N/A
CT1	3	Yes	Yes	GCF_c1	Yes	MEAS_CELL1	IC	CT1_UV_TH CT1_OV_TH
CT2	4	Yes	Yes	GCF_c2	Yes	MEAS_CELL2	IC	CT2_UV_TH CT2_OV_TH
CT3	5	Yes	Yes	GCF_c3	Yes	MEAS_CELL3	IC	CT3_UV_TH CT3_OV_TH
CT4	6	Yes	Yes	GCF_c4	Yes	MEAS_CELL4	IC	CT4_UV_TH CT4_OV_TH
CT5	7	Yes	Yes	GCF_c5	Yes	MEAS_CELL5	IC	CT5_UV_TH CT5_OV_TH
CT6	8	Yes	Yes	GCF_c6	Yes	MEAS_CELL6	IC	CT6_UV_TH CT6_OV_TH
AN0	9	Yes	Yes	GCF_ANx_ratio ^[1]	No ^[1]	MEAS_AN0	IC	AN0_UT_TH AN0_OT_TH
AN1	10	Yes	Yes	GCF_ANx_ratio ^[1]	No ^[1]	MEAS_AN1	IC	AN1_UT_TH AN1_OT_TH

Table 14. Gain compensation...continued

Measured channel	No.	Offset comp.?	Gain comp.?	By...	Temp. comp. ?	Result stored in...	...checked by...	... in the range of
AN2	11	Yes	Yes	GCF_ANx_ratio ^[1]	No ^[1]	MEAS_AN2	IC	AN2_UT_TH AN2_OT_TH
AN3	12	Yes	Yes	GCF_ANx_ratio ^[1]	No ^[1]	MEAS_AN3	IC	AN3_UT_TH AN3_OT_TH
AN4	13	Yes	Yes	GCF_ANx_ratio ^[1]	No ^[1]	MEAS_AN4	IC	AN4_UT_TH AN4_OT_TH
AN5	14	Yes	Yes	GCF_ANx_ratio ^[1]	No ^[1]	MEAS_AN5	IC	AN5_UT_TH AN5_OT_TH
AN6	15	Yes	Yes	GCF_ANx_ratio ^[1]	No ^[1]	MEAS_AN6	IC	AN6_UT_TH AN6_OT_TH
V _{BG_TJ}	16	Yes	Yes	GCF_Vbgp1	Yes	MEAS_VBG_DIAG_ADC1A	IC	thresholds vs. fuse_bg_ti
Reserved	17							
Reserved	18							
Reserved	19							
Reserved	20							
By ADC1-B								
CT7	1	Yes	Yes	GCF_c7	Yes	MEAS_CELL7	IC	CT7_UV_TH CT7_OV_TH
CT8	2	Yes	Yes	GCF_c8	Yes	MEAS_CELL8	IC	CT8_UV_TH CT8_OV_TH
CT9	3	Yes	Yes	GCF_c9	Yes	MEAS_CELL9	IC	CT9_UV_TH CT9_OV_TH
CT10	4	Yes	Yes	GCF_c10	Yes	MEAS_CELL10	IC	CT10_UV_TH CT10_OV_TH
CT11	5	Yes	Yes	GCF_c11	Yes	MEAS_CELL11	IC	CT11_UV_TH CT11_OV_TH
CT12	6	Yes	Yes	GCF_c12	Yes	MEAS_CELL12	IC	CT12_UV_TH CT12_OV_TH
CT13	7	Yes	Yes	GCF_c13	Yes	MEAS_CELL13	IC	CT13_UV_TH CT13_OV_TH
CT14	8	Yes	Yes	GCF_c14	Yes	MEAS_CELL14	IC	CT14_UV_TH CT14_OV_TH
Stack	9	Chopper	Yes	GCF_stack	No	MEAS_STACK	N/A	N/A N/A
Stack	10	Chopper	Yes	GCF_stack	No	MEAS_STACK	N/A	N/A N/A
Reserved	11	No	Yes	N/A	Yes	ADC1_B_RESULT	N/A	N/A N/A
VANA	12	Yes	Yes	GCF_c1	Yes	ADC1_B_RESULT	IC	N/A VANA_OV_TH
V _{BG_TJ}	13	Yes	Yes	GCF_Vbgp2	Yes	MEAS_VBG_DIAG_ADC1B	IC	thresholds vs. fuse_bg_ti
Reserved	14							
Reserved	15							
Reserved	16							
Reserved	17							
By ADC2								
ISENSE	1	Yes	Yes	GCF_i4-256	Yes	MEAS_I	IC	N/A TH_ISENSE_H
ISENSE	2	Yes	Yes	GCF_i4-256	Yes	MEAS_I	IC	N/A TH_ISENSE_H

[1] It is assumed that all ANx have been programmed as ratiometric; in case a certain ANx is programmed as an absolute input, the gain GCF_ANx_ratio gets replaced by GCF_c1 and the 'No' value contained in the column labeled 'Temp. comp. ?' is replaced by a 'Yes'.

9.12.1 Gain correction of the current channel

The following is a detailed explanation of the gain correction of the current channel.

- Room temperature delta gains:
GCF_ix (for $x = 4, 16, 64, 256$ representing all possible PGA gains) with resolution 0.09765625 %, spanning the range (-256...+255) 0.09765625 %
- Cold temperature delta gains:
GCF_cold_ix (for $x = 4, 16, 64, 256$ representing all possible PGA gains) with resolution 0.09765625 %, spanning the range (-16...+15) 0.09765625 %
- Hot temperature delta gains:
GCF_hot_ix (for $x = 4, 16, 64, 256$ representing all possible PGA gains) with resolution 0.09765625 %, spanning the range (-16...+15) 0.09765625 %

In contrast to i_gain_x, which is represented by a 9-bit word, GCF_hot_ix and GCF_cold_ix are represented by a reduced number of bits (5) and therefore their range is 16 times smaller than the one at room temperature, because the resolution is the same for all gains. Basically GCF_hot_ix and GCF_cold_ix can only additively correct the i_gain_x respectively in hot and cold conditions. This becomes clear by considering the gain temperature dependency, which is as follows:

If (temperature T is higher than T_room) Then // T is the IC temperature

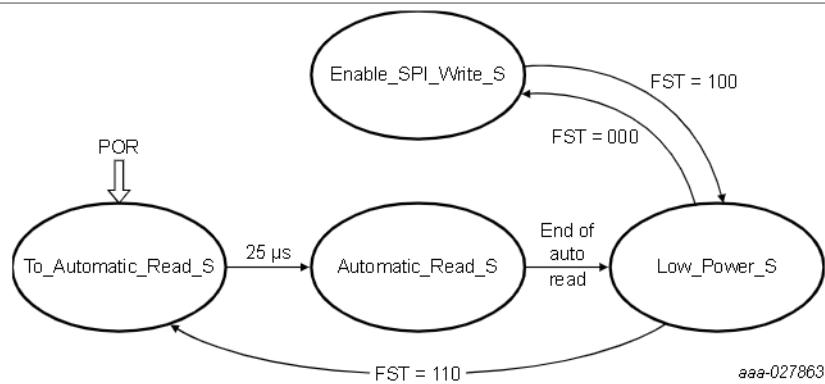
gain_selected = GCF_hot_ix

Else

gain_selected = GCF_cold_ix

EndIf

DG = GCF_ix + (gain_selected * k(T)) // where k(T) is a stored function, such that: $0 \leq k(T) \leq 1$, $k(T_{room}) = 0$ and $k(T_{cold}) = k(T_{hot}) = 1$


Gain = 1 + DG

If there is an EEPROM containing the equivalent of the fuse memory, some ECC bits are needed to protect them, as in the standard case of the fuse memory. The customized values and their own ECC values are completely independent on the NXP basic calibrations and their specific ECC stored in the fuses. Therefore, the user has to evaluate new ECC bits starting from its own calibration data and, finally, save both in the EEPROM.

There is a special calculation sheet the customer has to request from NXP. This sheet contains the correct values for DED_ENCODE_2 and DED_ENCODE_1 information, that is, ECC words used in the MC33771C to detect a single error in the data and to correct it. In case of a double error, the problem can only be detected. However, in the normal usage, the SYS_CFG2[HAMM_ENCOD] bit has to be set at logic 0. For safety reasons, it is recommended the value of such bit is periodically checked to be at logic 0. If the bit is not at logic 0, then it must be written at logic 0 again.

9.13 Mirror memory access

The mirror memory can be changed by using the FUSE_MIRROR_DATA and FUSE_MIRROR_CNTL general registers. The former contains the value of the data to be written into the mirror or to be read from it, while the latter contains the data address FMR_ADDR (whose value is in the range 0 to 31 decimal), some control fields (FSTM and FST) and a read only information about a possibly occurred detection and correction of data values (SEC_ERR_FLT).

Figure 19. Mirror memory control

To manage the mirror memory the FSM of [Figure 19](#) must be used.

Meaning of the states:

- To_Automatic_Read_S: transient state for slightly delaying the automatic read, after POR.
- Automatic_Read_S: in this state the entire bank of fuses is automatically transferred from analog matrix to the digital mirror.
- Low_Power_S: low power state; it must be the initial and final state of a sequence of write operations. This is the state where the mechanism idles after an automatic read.
- Enable_SPI_Write_S: state allows writing into the mirror.

Table 15. Sequence of read operations

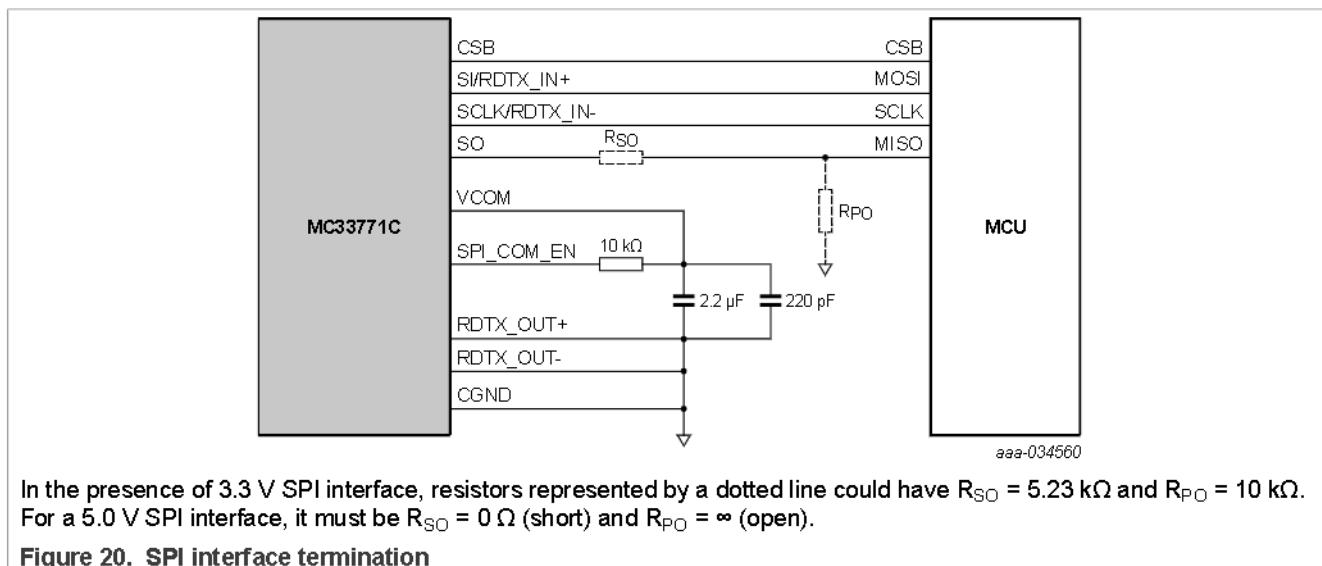
Type of command	FSTM	FST	FMR_ADDR	FUSE_MIRROR_DATA
FUSE_MIRROR_CNTL[FMR_ADDR] set	0	000	00000	X
FUSE_MIRROR_DATA	X	X	X	data read at addr \$0
FUSE_MIRROR_CNTL[FMR_ADDR] set	0	000	00001	X
FUSE_MIRROR_DATA	X	X	X	data read at addr \$1
FUSE_MIRROR_CNTL[FMR_ADDR] set	0	000	00010	X
FUSE_MIRROR_DATA read	X	X	X	data read at addr \$2

The read sequence may be useful, for example when the user wants to read the traceability information (serial number) contained in some specific words of the mirror memory. See [Table 35](#) and [Table 87](#).

Table 16. Sequence of write operations

Type of command	FSTM	FST	FMR_ADDR	FUSE_MIRROR_DATA
FUSE_MIRROR_CNTL to enable writing	1	000	00000	X
FUSE_MIRROR_CNTL[FMR_ADDR] at \$0	1	000	00000	X
FUSE_MIRROR_DATA	X	X	X	Data to be written at addr \$0
FUSE_MIRROR_CNTL[FMR_ADDR] at \$1	1	000	00001	X
FUSE_MIRROR_DATA	X	X	X	Data to be written at addr \$1
FUSE_MIRROR_CNTL[FMR_ADDR] at \$2	1	000	00010	X
FUSE_MIRROR_DATA	X	X	X	Data to be written at addr \$2
FUSE_MIRROR_CNTL to low power	1	100	X	X

10 Communication


The MC33771C is designed to support Serial Peripheral Interface (SPI) or Transformer Physical Layer (TPL) communication.

SPI communication uses the standard CSB to select the MC33771C and clocks data in and out using SCLK, SI, and SO. Using SPI to communicate to the MC33771C provides system isolation when used in conjunction with galvanic isolators. Serial communication is enabled using the SPI_COM_EN pin. To select SPI communication, the SPI_COM_EN pin must be terminated to the VCOM supply. Terminating the SPI_COM_EN pin to CGND pin selects TPL communication. Systems using only SPI communication to the MC33771C may leave RDTX_OUT+ and RDTX_OUT- unterminated or may short them to ground.

During initialization, each MC33771C device is assigned a specific address by the MCU by writing a non-zero value to INIT[CID] bit field. Only the MC33771C with the correct address acts upon and responds to the request from MCU. After initialization, the MCU may communicate globally to all slave devices by using a global command. No response is generated when a global command is received by each slave device in the chain.

Note: The MC33771C supports only one communication method at a time and is determined by the state of SPI_COM_EN pin. Changing the state of the SPI_COM_EN pin after POR and VCOM is in regulation is considered a communication fault, and sets the COM_LOSS_FLT bit. The MC33771C remains in same configuration determined at POR.

10.1 SPI communication

In the presence of 3.3 V SPI interface, resistors represented by a dotted line could have $R_{SO} = 5.23 \text{ k}\Omega$ and $R_{PO} = 10 \text{ k}\Omega$. For a 5.0 V SPI interface, it must be $R_{SO} = 0 \Omega$ (short) and $R_{PO} = \infty$ (open).

Figure 20. SPI interface termination

SPI input signal levels to the MC33771C operate at 5.0 V logic levels but are 3.3 V compatible.

The SO output driver provides 5.0 V levels only and therefore must be attenuated to be compatible with a 3.3 V MCU.

The MC33771C SPI interface is a standard SPI interface with a chip select (CSB), clock (SCLK), master in slave out (MISO), and master out slave in (MOSI). The SI/SO shifting of the data follows a first-in-first-out method, with both input and output words transferring the most significant bit (MSB) first. All SPI communication to the MC33771C is controlled by the microcontroller.

One 48-bit message frame for previously requested data is retrieved through serial out for each current serial in message sent by the MCU. For message integrity and communication robustness, each SPI transmit message consists of nine bit fields with a total of 48 bits message frame. The nine transmit fields are defined as following:

1. Register data (16 bits).
2. Master/slave (1 bit), always at 1 in the response.
3. Register address (7 bits).
4. Reserved (2 bits).
5. Cluster ID (6 bits).
6. Message counter (4 bits).
7. Reserved (2 bits).
8. Command (2 bits).
9. Cyclic redundancy check (8 bits)

Messages having less or more than 48 bits, incorrect CRC, or incorrect SCLK phase are disregarded. Communication faults set the COM_ERR_FLT fault bit in the FAULT1_STATUS register and increments the COM_STATUS[COM_ERR_COUNT] register.

Note: *It is required that the SCLK input is low before the falling edge of CSB (SCLK phase).*

Table 17. SPI command format

Register data	Master/slave	Register address	Reserved	Device address (cluster ID)	Message counter	Reserved	Command	CRC
Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]

Information is transferred to and from the MC33771C through the read and write commands. After a power-up (POR) or RESET (pin) or SYS_CFG1[SOFT_RST], the MC33771C device only responds to the cluster ID of 00 0000b. The user must change the cluster ID of the device by writing a new cluster ID into register INIT[CID]. Subsequent read/write command must use the new cluster ID to communicate to the device. Whatever the type of transmitted message, the master has to write a logic 0 in the master/slave bit. Any message transmitted by the user with master/slave bit set to 1 or with wrong CID is treated as Invalid request by MC33771C.

Notes:

- In SPI communication, global write commands are not allowed and the MC33771C responds with all bit field set to zero except message counter and correct CRC, in the subsequent message frame.
- In SPI communication, the MC33771C responds with all bit filed set to zero except message counter and correct CRC to an invalid request from MCU.
- In SPI communication, the MC33771C responds with all bit filed set to zero except message counter and the correct CRC to the very first MC33771C/ MCU message frame.

The response message sent by MC33771C to MCU is similar to the receive message and includes the 4-bit message counter. The Message counter is a local counter to MC33771C. It is increased by one for each new response transmitted by MC33771C, this applies also to auto read generated by MC33771C for write and NOP commands. It is recommended that the MCU compares the message counter value of two consecutive responses transmitted by MC33771C, if the values are same then MCU shall treat the messages as error.

1. Register data (16 bits)
2. Master/slave (1 bit)
3. Register address (7 bits)
4. Reserved (2 bits)
5. Cluster ID (6 bits)
6. Message counter (4 bits)
7. Reserved (2 bits)
8. Command (2 bits)
9. Cyclic redundancy check (8 bit)

Table 18. SPI response format

Register data	Master/slave	Register address	Reserved	Device address (cluster ID)	Message counter	Reserved	Command	CRC
Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]

To initiate communication, the MCU transitions CSB from high to low. The data from the MCU is sent with the most significant bit first. The SI data is latched by the device on the falling edge of SCLK. Data on SO is changed on the rising edge of SCLK and read by MCU on the falling edge of SCLK. The SO response message is dependent on the previous command.

Falling edge of CSB initiates the following:

1. Enables the SI Input
2. Enables the SO output driver

Rising edge of CSB initiates the following operation:

1. Disables the SO driver (high-impedance)
2. Activates the received 48-bit command word allowing the MC33771C to act upon the new command

Notes:

- The MC33771C responds to a NO_OPERATION command with a NO_OPERATION response (with increased message counter value) in the subsequent response.
- After initialization, when writing to a register, the MC33771C responds with an auto read of the register which was written in the subsequent write request.
- The MC33771C does not execute any command if the master/slave bit is equal to logic 1.

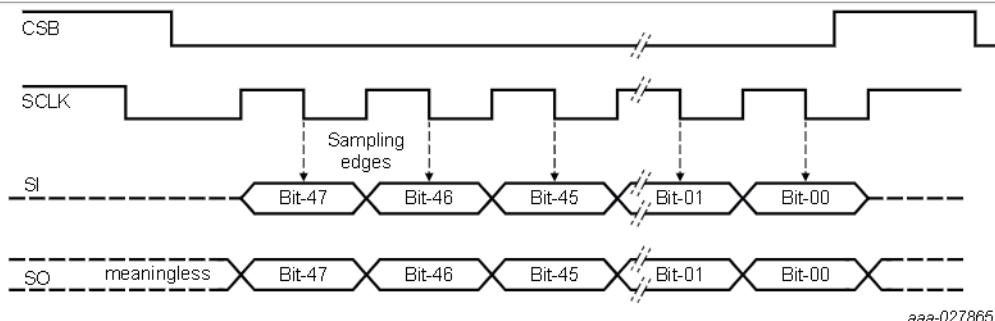
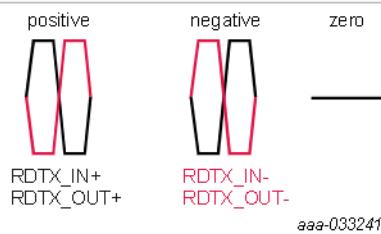


Figure 21. SPI transmission

10.2 TPL communication

High speed differential isolated communication is achieved through the use of transformer or capacitive isolation. Terminating the SPI_COM_EN pin to the CGND pin selects transformer communication. For transformer communication (TPL), an MC33664 IC is required between the MC33771C IC and the MCU, as shown in [Figure 50](#).

For TPL communication, it is recommended that the device is terminated as shown in [Figure 50](#). Component values are given in [Section 13.2 "MC33771C External Components"](#).


The MC33771C IC is equipped with a bi-directional transceivers for upstream and downstream communication. The bi-directional transceiver is implemented to support up to 63 nodes in one daisy chain (CID = 00 0000b is reserved for network initialization). The message received by the receiver on one port of MC33771C is retransmitted by the transmitter of the opposite port of MC33771C. This ensures that the message is not attenuated as it propagates through the daisy chain. Each node in the daisy chain adds a delay of t_{port_delay} for forwarding messages in the daisy chain.

In TPL communication, the CSB pin may be used as a wake-up input. During SLEEP mode, an edge transition of the CSB initiates the wake-up function. Alternatively, the CSB pin may be shorted to ground or software masked to prevent undesired wake-up events.

Communication between the pack controller and the MC33771C is half duplex communication with transformer isolation. Transformer physical layer in the pack controller creates a pulse phase modulated signal transmitted to the bus through the transformer. The MC33771C physical layer is equipped with a segment-based transmitter, which is used as a terminating resistor (internally) during the receive mode. The default value of terminating resistance is set to $120\ \Omega$ for impedance matching and network stability. In TPL communication, the MC33771C IC is always electrically connected to its neighbouring MC33771C ICs in a daisy chain.

10.2.1 TPL Encoding

The transformer physical layer (TPL) uses pulse encoded symbols for communication. The three signal pulses used for encoding positive (P, black), negative (N, red) and zero (M, black) are shown in [Figure 22](#).

Figure 22. TPL Pulses

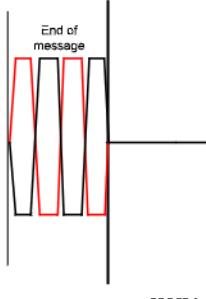
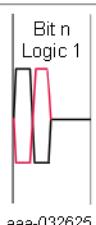
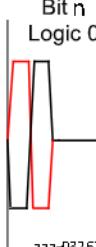



Start-of-message and end-of-message symbols are generated by the transformer driver and always occur at the start and end of the communication message. The start-of-message symbol and end-of-message symbol each contain two complete signal pulses. The start-of-message symbol produces a double pulse with a logic 1 phase. End-of-message produces a double pulse with logic 0 phase. Data pulses are single period pulse waves that indicate logic 1 or 0, based on the phase. The four symbols shown in [Table 19](#) are used.

Table 19. TPL encoding

Symbols	Pulse modulation	Description
Start-of-message (SOM)	<p>Start of message</p> <p>Two pulse positive square waves</p> <p>aaa-032623</p>	positive phase, double pulse (and plus pause)

Figure 23. SOM

Table 19. TPL encoding ...continued

Symbols	Pulse modulation	Description
End-of-message (EOM)		negative phase, double pulse
Logic 1		positive phase, single pulse (and plus pause)
Logic 0		negative phase, single pulse (and plus pause)

10.2.2 Command message bit order

Same as in [Section 10.1 "SPI communication"](#)

10.2.3 Response message bit order

Same as in [Section 10.1 "SPI communication"](#)

10.2.4 Transformer communication format

Command and response frames are exchanged primarily between a single master and any single slave. One exception is the use of a global command, which can be transmitted from one master to multiple slaves, but includes no slave response. The purpose of the command and response transactions are to read and write to registers within the slave register map.

The command and response communication structure provides all context information required for unambiguous single-exchange transactions for extended memory applications requiring safety critical and efficient memory access.

The message structures have predefined fixed bit length frames and defined timing between transfers. To transfer data efficiently from the slave, multiple response packets may be requested by the read command. The MC33771C defines a set of fields that constitute the command and response message structure.

Transformer message format is identical to the SPI format. Command message frames consist of nine fields containing exactly 48 bits. The response structure is similar to the SPI format.

After initialization, information is transferred to and from the MC33771C through the read and write commands.

On Power Up or POR, the first MC33771C device in the chain responds to address 00 0000b⁴⁵. The user must program the first device with a new address by writing to the INIT[CID] register. Programming the device with a new address allows the pack controller to communicate and initialize the next device in the daisy chain. Subsequent read/write commands to the next device must use the new address to communicate.

All write commands sent by the master must consist of a single frame. The slave device does not generate any response to a write command from master but only acts on it. Similarly, the slave device does not generate any response nor performs any operation after receiving a valid NOP message from the master.

Read commands sent by the master may generate a single response or multiple responses depending on the parameters set in the read request. The packet size and memory start location are identified in the read command sent by the master.

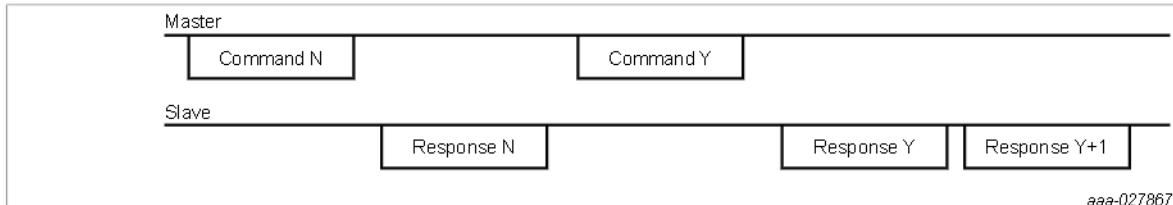


Figure 27. Bus traffic example

No response is generated by a slave MC33771C when a corrupted message is received. Confirmation that a global write command is received by the slave must be done by reading the register in which it was written.

In cases where a bus error occurs, due to induced noise or a bus fault, the slave detects bad data transfers. The MC33771C slave reacts to communication faults by setting the FAULT1_STATUS[COM_ERR_FLT] and incrementing the COM_STATUS[COM_ERR_COUNT] register.

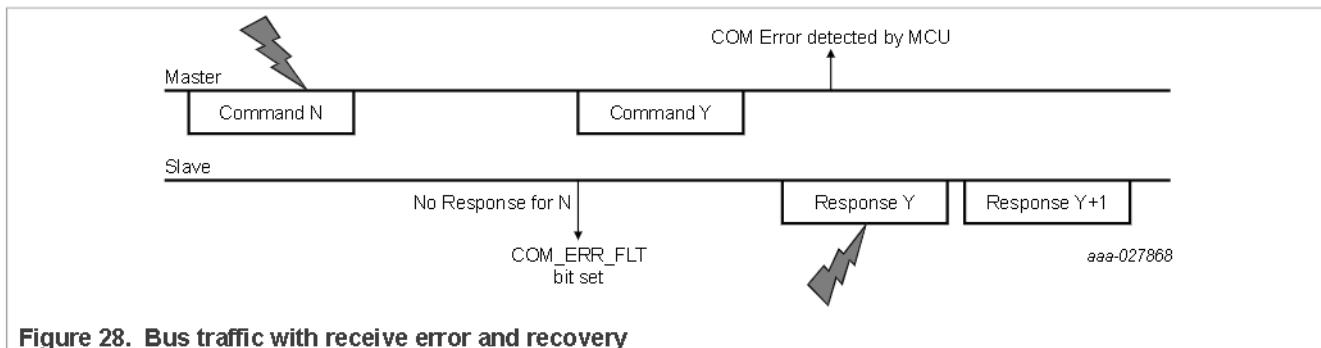
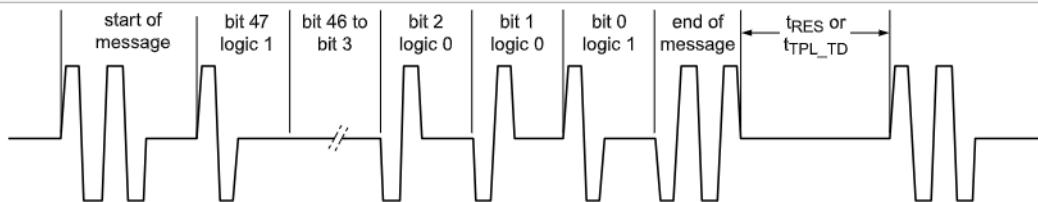


Figure 28. Bus traffic with receive error and recovery


All valid read commands sent to an individual slave provide a response. In the event a slave does not respond to a read request message, the master must assume the message was corrupted or lost. To recover from the event, the master must retransmit the message. Corrupted messages received by the master are detected through an incorrect CRC code. To recover, the master must request the data again.

4 A slave device at POR with INIT[CID] = 00 0000b responds only at the port it received the request.

5 A slave device with CID = 00 0000b does not forward messages.

10.2.5 Transformer communication timing

Command and response message frames are to be sent and received at 2.0 Mbps bit rate. The response to a first read request command is provided within t_{RES} of the end of the frame. However, two consecutive message responses transmitted by MC33771C IC for burst read request are separated by t_{TPL_TD} time as shown in [Figure 29](#).

Figure 29. Transformer communication waveforms

Each sent and received message starts with Start of Message (SOM) bit followed by a 48-bit message and ends with an End of Message (EOM) bit.

10.2.6 Transformer communication wake-up

In TPL communication, the system wake-up can be triggered by either the MC33771C IC (wake-up due to internal event) or the pack controller (MCU). In both cases, a dedicated wake-up pulse sequence is used. The wake-up pulse sequence consists of two transmit messages with no data transmitted. The messages are separated by a delay time (t_{WAKE_DELAY}). Each message contains a SOM and EOM symbol.

10.2.6.1 MC33771C System wake-up

By default, the internal event wake-up capability of the MC33771C is disabled. When enabled and in the event the MC33771C detects a wake-up condition, the device initiates a wake-up pulse sequence on the bus to alert the pack controller. The MC33771C IC initiating the wake-up, due to an internal event, sends the wake-up sequence upstream and downstream in the daisy chain to ensure the wake-up message propagates along the entire chain to the pack controller. Each neighbouring MC33771C IC in daisy chain forwards the received wake-up sequence opposite to the direction where it received the wake-up sequence. In this process, all MC33771C devices in the daisy chain, along with the pack controller, are awoken. After the pack controller gets awoken; it is recommended the pack controller interrogate each MC33771C in the system to determine the source of the wake-up.

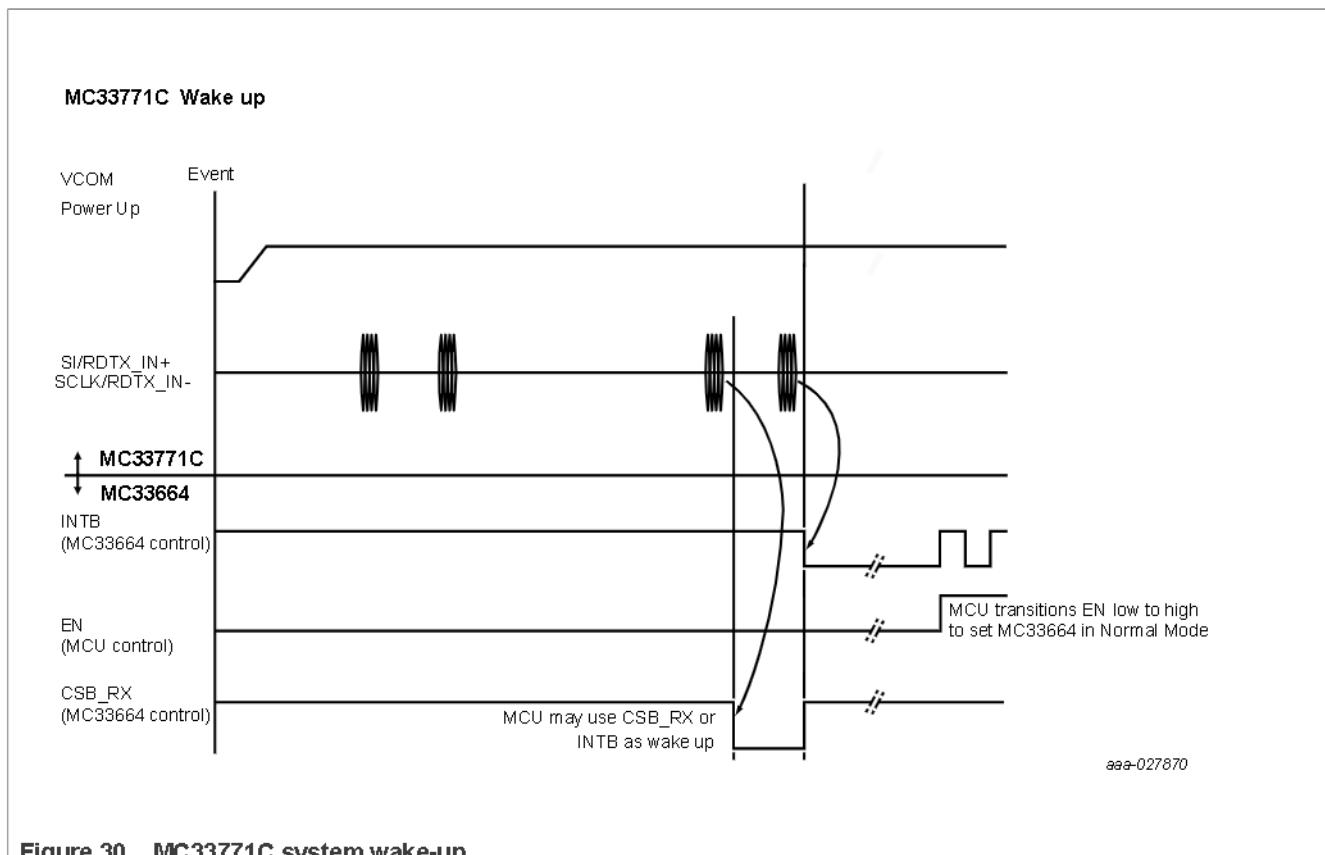


Figure 30. MC33771C system wake-up

Note: The system wake-up performed by MC33771C IC in case of any internal event is disabled by default. This wake-up can be activated by writing to register WAKEUP_MASK1, WAKEUP_MASK2 and WAKEUP_MASK3.

10.2.6.2 Pack controller system wake-up

The pack controller can also perform system wake-up by sending a wake-up sequence to the first MC33771C IC. The pack controller can use the CSB_TX pin of the MC33664 to generate SOM and EOM with correct timing.

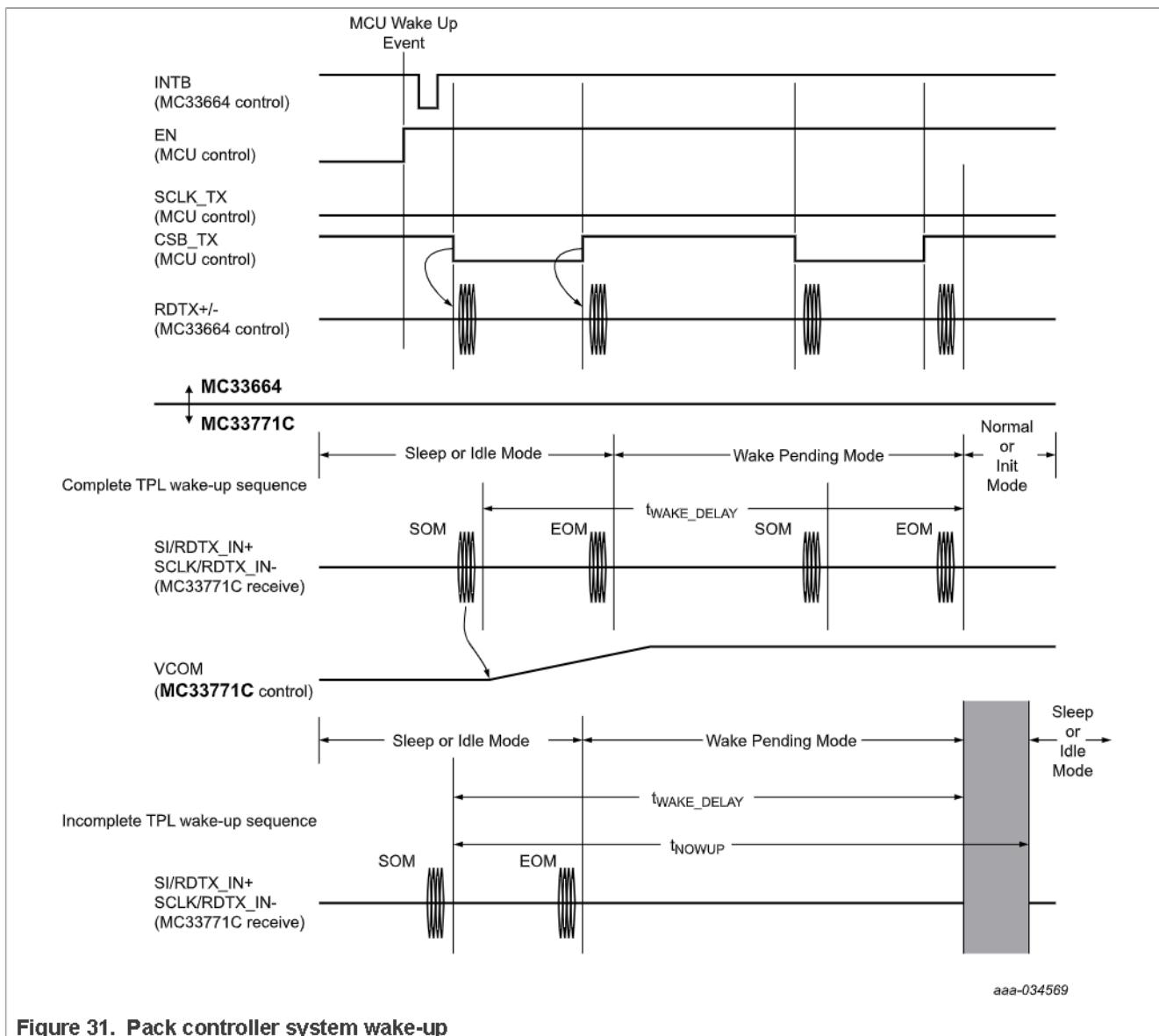


Figure 31. Pack controller system wake-up

If the device is in Sleep mode, each successive slave device awoken by the wake-up message on the bus, generates a new wake-up message for its neighbor. The message is to be transmitted in one direction only on the bus. The direction of transmission of the wake-up message on the bus is always at the opposite port of the received wake-up message. In the unlikely event of a collision, the message at the lower port (RDTX_IN) is given a higher priority than the message at the higher port (RDTX_OUT).

Note:

- Any write message of any length can be used to generate both wake-up pulses and obtain a valid device wake-up.
- The second wake-up message should be sent after a minimum time of t_{WAKE_DELAY} (min) from the first SOM reception.
- The device falls back to Sleep or Idle mode when an SOM followed by EOM is not received in t_{WAKE_DELAY} (max).
- If the wake-up sequence is incomplete, then a new wake-up attempt can only be done after a t_{NOWUP} delay. See [Figure 31](#).

- The pack controller must wait for t_{WU_Wait} ms per node to communicate with the MC33771C ICs after sending the first wake-up message. For example, given that the MC33771C IC is enumerated, with 10 nodes in a daisy chain the pack controller must wait 7.5 ms before communicating to MC33771C IC. The waiting time allows all the MC33771C ICs in the system to transition to normal mode.
- The pack controller must use only one master node to perform wake-up of devices.

10.3 CRC generation

The master and slaves calculate a CRC on the entire message using the processes detailed in this section.

The command and response CRC is fixed at 8 bits in length. The CRC is calculated using the polynomial $x^8 + x^5 + x^3 + x^2 + x + 1$ (identified by 0x2F) with a seed value of binary 11111111.

An example CRC encoding HW implementation is shown in [Figure 32](#).

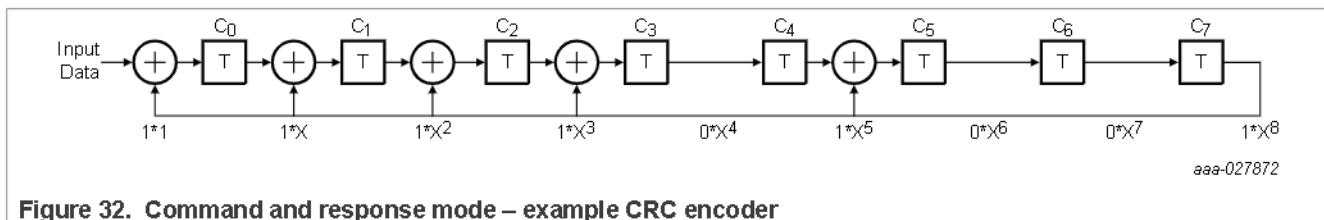


Figure 32. Command and response mode – example CRC encoder

The effect of the CRC encoding procedure is shown in the following table. The seed value is appended into the most significant bits of the shift register.

Table 20. Data preparation for CRC encoding

Seed	Register data	Master / Slave	Register address	Reserved	Cluster ID	Message counter	Reserved	Cmd
1111_1111	Bits [47:32]	Bit [31]	Bits [30:24]	Bits[23:22]	Bits[21:16]	Bits[15:12]	Bits[11:10]	Bits[9:8]
Seed...	...padded with the message to encode...							

- Using a serial CRC calculation method, the transmitter rotates the seed and data into the least significant bits of the shift register.
- During the serial CRC calculation, the seed and the data bits are XOR compared with the polynomial data bits. When the MSB is logic 1, the comparison result is loaded in the register, otherwise the data bits are simply shifted. It must be noted the 48-bit message to be processed must have the bits corresponding to the CRC byte all equal to zero (00000000).
- Once the CRC is calculated, it replaces the CRC byte initially set to all zeros and is transmitted.

Following is the procedure for the CRC decoding:

- The seed value is loaded into the most significant bits of the receive register.
- Using a serial CRC calculation method, the receiver rotates the received message and CRC into the least significant bits of the shift register in the order received (MSB first).
- When the calculation on the last bit of the CRC is rotated into the shift register, the shift register contains the CRC check result.
 - If the shift register contains all zeros, the CRC is correct.
 - If the shift register contains a value other than zero, the CRC is incorrect.

CRC calculation examples:

Table 21. Command CRC calculation examples

Data 16 bit (Hex)	Master/slave bit and memory address, 8 bit (Hex)	Reserved (2 bits) and Cluster Id (6 bit), 8 bit (Hex)	Message counter, 4 bit (Hex)	Reserved (2 bits) and Command (2 bits), 4 bit (Hex)	CRC 8 bit (Hex)	Frame 48 bit (Hex)
0x0101	0x08	0x01	0x3	0x0	0x3C	0x01010801303C
0xA0A	0x01	0x0A	0x9	0x1	0x84	0xA0A010A9184
0x1C4	0x0F	0x02	0x1	0x2	0x26	0x01C40F021226
0x7257	0x01	0x05	0x7	0x3	0xC7	0x7257010573C7

Table 22. Response CRC calculation examples

Data 16 bit (Hex)	Master/slave bit and memory address, 8 bit (Hex)	Reserved (2 bits) and Cluster Id (6 bit), 8 bit (Hex)	Message counter 4 bit (Hex)	Reserved (2 bits) and Command (2 bits), 4 bit (Hex)	CRC 8 bit (Hex)	Frame 48 bit (Hex)
0x1101	0x89	0x01	0x3	0x0	0x26	0x110189013026
0x2002	0x89	0x05	0x9	0x0	0x7A	0x20028905907A
0x5103	0x89	0x0A	0x1	0x5	0x07	0x5103890A1507
0xFF04	0x89	0x06	0x7	0x2	0xA6	0xFF04890672A6

10.4 Commands

10.4.1 Read command and response

Read command is intended to be used for SPI and transformer interface. The read command is a local command used for retrieving data from the MC33771C device. The data field contains the number of data registers to be returned. Requesting data from registers greater than address \$7F forces the device to loop the register counter back to register \$00.

Table 23. Read command table

Command name	Register data		Response/Command	Register address	Reserved	Device address (cluster ID)	Message counter	Reserved	Command	CRC	
	Bit[47:32]		Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]	
Read command	XXXX	XXXX X	NRT-01 to 7F	0b	Register address	xxb	CID	xxxxb	xxb	01b	CRC

Table 24. Read response table

Command name	Register data	Response/Command	Register address	Reserved	Device address (cluster ID)	Message counter	Reserved	Command	CRC
	Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]
Read MsgCntr Response	Register Data	1b	Register address	00b	CID	MsgCntr	00b	01b	CRC

Table 25. Legend for read command, read response tables

Read command	Read response
Bit[7:0] = 8-bit CRC	Bit[7:0] = 8-bit CRC
Bit[9:8] = Command (01b)	Bit[9:8] = Command field (01b)
Bit[11:10] = Reserved (xxb)	Bit[11:10] = Reserved (00b)
Bit[15:12] = Message counter	Bit[15:12] = Message counter
Bit[21:16] = Device address (Cluster ID)	Bit[21:16] = Device address (Cluster ID)
Bit[23:22] = Reserved = X, don't care	Bit[23:22] = Reserved (00b)
Bit[30:24] = Register address	Bit[30:24] = Register address
Bit[31] = Master/slave = 0b (master)	Bit[31] = Response/Command = 1b(slave)
Bit[39:32] = NRT, number of registers to transfer back. Max is \$7F, loop back on address \$00	Bit[47:32] = Data at memory address
Bit[47:40] = X, don't care	

Notes:

- The read command is a local command
- Requesting a read of a reserved register provides a \$0000 data response
- Registers are read-only on devices that have not been initialized
- Requesting a number of NRT equal to 00 is the same as requesting 01
- The MsgCntr is a local counter of MC33771C IC. It is only increased by the node responding to MCU request. The node increases the value of MsgCntr by 1 with each new response transmitted by MC33771C. On saturation of this counter it restarts from 0000b.
- The initial value of message counter is 0000b and first response transmitted by MC33771C has the message counter value set to 0000b.

10.4.2 Local write command

Unlike the read command, for which MC33771C responds with data, the write command does not generate any response. When the slave receives a valid local write command, the message is acted upon but no response is generated. Writing to read only registers does not allow the register content to be updated.

Table 26. Write command table

Command name	Register data	Response/Command	Register address	Reserved	Device address (cluster ID)	Message counter	Reserved	Command	CRC
	Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]
Write command	Register Data	0b	Register address	xxb	CID	xxxxb	xxb	10b	CRC

Table 27. Legend for write command and write response tables

Write command	
Bit[7:0]	= 8-bit CRC
Bit[9:8]	= Command (10b)
Bit[11:10]	= Reserved (xxb)
Bit[15:12]	= Message counter (xxxxb)
Bit[21:16]	= Device address (cluster ID)
Bit[23:22]	= Reserved (xxb)
Bit[30:24]	= Register address
Bit[31]	= Response/Command = 0b
Bit[47:32]	= Register Data

Note: Writing to reserved registers performs no operation and loads no data in the reserved register.

10.4.3 Global write command

The global write command allows the transformer user to communicate to all devices on the bus at the same time. The global write command is useful to program all devices at the same time with values for fault threshold or to synchronize conversions for all devices on the bus. When a slave receives a valid global write command, the message is acted upon, but no response is generated.

Table 28. Global write command table

Command name	Register data	Response/Command	Register address	Reserved	Device address (cluster ID)	Message counter	Reserved	Command	CRC
	Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]
Global Write command	Register Data	0b	Register address	xxb	XX XXXXb (global)	MsgCntr	xxb	11b	CRC

Table 29. Legend for global write command table

Write command	
Bit[7:0]	= 8-bit CRC
Bit[9:8]	= Command field (11b)
Bit[11:10]	= Reserved (0xb)
Bit[15:12]	= Message counter = xxxx b (global)
Bit[21:16]	= Device address (Cluster ID) = xx xxxx b (global)
Bit[23:22]	= Reserved = xxb, Don't care
Bit[30:24]	= Register address
Bit[31]	= Response/Command = 0b
Bit[47:32]	= Register Data

10.4.4 No operation command

The No Operation (NOP) command allows the user to reset the communication time-out timer of the MC33771C. If the pack controller has no new request for MC33771C IC but does not want the MC33771C to reset (and lose its CID address), it can send a NOP command to the MC33771C IC. The NOP command does not trigger any response or operation from the MC33771C. Thus, the NOP command can be used by the pack controller like a ping to prevent the IC from resetting itself.

Table 30. No operation command table

Command name	Register data	Response/Command	Register address	Reserved	Device address (cluster ID)	Message counter	Reserved	Command	CRC
No operation (NOP) command	Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]

Table 31. Legend for no operation command and no operation response tables

Write command	
Bit[7:0]	= 8-bit CRC
Bit[9:8]	= Command field (00b)
Bit[11:10]	= Reserved (0xb)
Bit[15:12]	= Message counter
Bit[21:16]	= Device address (Cluster ID) = CID
Bit[23:22]	= Reserved = xxb, Don't care
Bit[30:24]	= Register address
Bit[31]	= Response/Command = 0b
Bit[47:32]	= Register Data

10.4.5 Command and response summary

Table 32. Command summary table

Command name	Register data	Response/Command	Register address	Reserved	Device address (Cluster ID)	Message counter	Reserved	Command	CRC
	Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]
NOP command	xxxx xxxxb	0b	xxx xxxx b	xx b	CID	XXXX b	XX b	00 b	CRC
Read command	Number of registers	0b	Register address	xx b	CID	XXXX b	XX b	01 b	CRC
Write command	Register Data	0b	Register address	xx b	CID	XXXX b	XX b	10 b	CRC
Global write command	Register Data	0b	Register address	xx b	XX XXXX b	XXXX b	XX b	11 b	CRC

If a device has its cluster ID (CID) equal to 00 0000b, then only its INIT register can be written by the pack controller. All the MC33771C devices have their First message from MCU controller writing to cluster ID 00 0000b. To perform a read/write operation of any register (other than INIT) of MC33771C IC, the MCU must first assign a unique address to each MC33771C device by writing to its INIT register with a suitable CID value. The process of assigning a unique CID address to each slave device by the pack controller is called *initialization*.

After initialization, each time the device receives a frame having the master/slave bit equal to logic 1, this frame is not recognized, even though the address contained in the CID field is equal to the programmed one. In this condition, the device neither acts upon nor answers the command. This is a normal behavior, whose purpose is to avoid the device acting upon or responding to a frame generated by another slave device of the network.

Table 33. Response summary table

Command name	Register data	Response/Command	Register address	Reserved	Device address (Cluster ID)	Message counter	Reserved	Command	CRC
	Bit[47:32]	Bit[31]	Bit[30:24]	Bit[23:22]	Bit[21:16]	Bit[15:12]	Bit[11:10]	Bit[9:8]	Bit[7:0]
Read response	Register Data	1b	Register address	00 b	CID	MsgCntr	XX b	01 b	CRC

10.5 I²C communication interface

As an optional feature, the MC33771C has an integrated I²C communication link to an external local EEPROM, which may be used to store calibration parameters defined by the user. If the EEPROM is not used, then the SCL and SDA pins must be left open. When this occurs, the FAULT1_STATUS[I2C_ERR_FLT] bit is automatically updated to logic 1. The automatic update happens even if an error bit is masked. If no EEPROM is mounted, the pack controller has to ignore the content of FAULT1_STATUS[I2C_ERR_FLT].

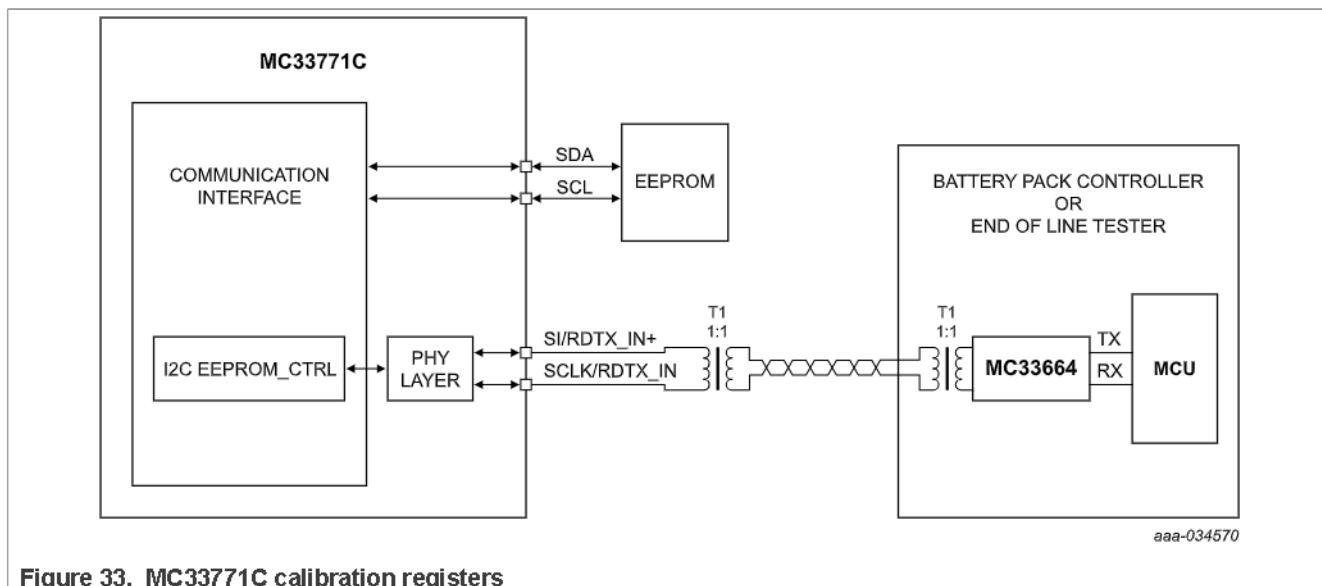


Figure 33. MC33771C calibration registers

11 Registers

11.1 Register map

Important: Trying to access registers marked as reserved produces responses having all zeros in the data field.

Unless otherwise stated, in all register descriptions, POR means one of the following:

- Power on reset
- Hardware reset
- Software reset
- Reset event based on SYS_CFG2[FLT_RST_CFG] register configuration

Table 34. Register table

Register	Response	Reference	Description	Notes
A[6:0] Symbol				
\$00 Reserved	Table 24		Reserved	Not readable or writeable
\$01 INIT	Table 24	Section 11.2	Device initialization	Global write is forbidden for CID
\$02 SYS_CFG_GLOBAL	Table 24	Section 11.3	Global system configuration	Only accessible through a global access in transformer mode. In SPI mode it can be written by a standard write command.
\$03 SYS_CFG1	Table 24	Section 11.4	System configuration	
\$04 SYS_CFG2	Table 24	Section 11.5	System configuration	
\$05 SYS_DIAG	Table 24	Section 11.6	System diagnostic	Writable in DIAG mode only, automatically

Table 34. Register table...continued

Register	Response	Reference	Description	Notes
A[6:0]	Symbol			
				cleared when exiting DIAG mode
\$06	ADC_CFG	Table 24	Section 11.7	ADC configuration
\$07	ADC2_OFFSET_COMP	Table 24	Section 11.8	ADC2 offset compensation
\$08	OV_UV_EN	Table 24	Section 11.9	CT measurement selection
\$09	CELL_OV_FLT	Table 24	Section 11.10	CT overvoltage fault
\$0A	CELL_UV_FLT	Table 24	Section 11.11	CT undervoltage fault
\$0B	TPL_CFG	Table 24	Section 11.12	TPL configuration for up and down Transmitter
\$0C	CB1_CFG	Table 24	Section 11.13	CB configuration for cell 1
\$0D	CB2_CFG	Table 24	Section 11.13	CB configuration for cell 2
\$0E	CB3_CFG	Table 24	Section 11.13	CB configuration for cell 3
\$0F	CB4_CFG	Table 24	Section 11.13	CB configuration for cell 4
\$10	CB5_CFG	Table 24	Section 11.13	CB configuration for cell 5
\$11	CB6_CFG	Table 24	Section 11.13	CB configuration for cell 6
\$12	CB7_CFG	Table 24	Section 11.13	CB configuration for cell 7
\$13	CB8_CFG	Table 24	Section 11.13	CB configuration for cell 8
\$14	CB9_CFG	Table 24	Section 11.13	CB configuration for cell 9
\$15	CB10_CFG	Table 24	Section 11.13	CB configuration for cell 10
\$16	CB11_CFG	Table 24	Section 11.13	CB configuration for cell 11
\$17	CB12_CFG	Table 24	Section 11.13	CB configuration for cell 12
\$18	CB13_CFG	Table 24	Section 11.13	CB configuration for cell 13
\$19	CB14_CFG	Table 24	Section 11.13	CB configuration for cell 14
\$1A	CB_OPEN_FLT	Table 24	Section 11.14	Open CB fault
\$1B	CB_SHORT_FLT	Table 24	Section 11.15	Short CB fault
\$1C	CB_DRV_STS	Table 24	Section 11.16	CB driver status
\$1D	GPIO_CFG1	Table 24	Section 11.17	GPIO configuration
\$1E	GPIO_CFG2	Table 24	Section 11.18	GPIO configuration
\$1F	GPIO_STS	Table 24	Section 11.19	GPIO diagnostic
\$20	AN_OT_UT_FLT	Table 24	Section 11.20	AN over and undertemperature
\$21	GPIO_SHORT_ANx_OPEN_STS	Table 24	Section 11.21	Short GPIO/open AN diagnostic
\$22	I_STATUS	Table 24	Section 11.22	PGA DAC value
\$23	COM_STATUS	Table 24	Section 11.23	Number of COM error counted
\$24	FAULT1_STATUS	Table 24	Section 11.24	Fault status
\$25	FAULT2_STATUS	Table 24	Section 11.25	Fault status

Table 34. Register table...continued

Register		Response	Reference	Description	Notes
A[6:0]	Symbol				
\$26	FAULT3_STATUS	Table 24	Section 11.26	Fault status	
\$27	FAULT_MASK1	Table 24	Section 11.27	FAULT pin mask	
\$28	FAULT_MASK2	Table 24	Section 11.28	FAULT pin mask	
\$29	FAULT_MASK3	Table 24	Section 11.29	FAULT pin mask	
\$2A	WAKEUP_MASK1	Table 24	Section 11.30	Wake-up events mask	
\$2B	WAKEUP_MASK2	Table 24	Section 11.31	Wake-up events mask	
\$2C	WAKEUP_MASK3	Table 24	Section 11.32	Wake-up events mask	
\$2D	CC_NB_SAMPLES	Table 24	Section 11.33	Number of samples in coulomb counter	
\$2E	COULOMB_CNT1	Table 24	Section 11.34	Coulomb counting accumulator	
\$2F	COULOMB_CNT2	Table 24	Section 11.34		
\$30	MEAS_ISENSE1	Table 24	Section 11.35	ISENSE measurement	
\$31	MEAS_ISENSE2	Table 24	Section 11.35	ISENSE measurement	
\$32	MEAS_STACK	Table 24	Section 11.36	Stack voltage measurement	
\$33	MEAS_CELL14	Table 24	Section 11.36	Cell 14 voltage measurement	
\$34	MEAS_CELL13	Table 24	Section 11.36	Cell 13 voltage measurement	
\$35	MEAS_CELL12	Table 24	Section 11.36	Cell 12 voltage measurement	
\$36	MEAS_CELL11	Table 24	Section 11.36	Cell 11 voltage measurement	
\$37	MEAS_CELL10	Table 24	Section 11.36	Cell 10 voltage measurement	
\$38	MEAS_CELL9	Table 24	Section 11.36	Cell 9 voltage measurement	
\$39	MEAS_CELL8	Table 24	Section 11.36	Cell 8 voltage measurement	
\$3A	MEAS_CELL7	Table 24	Section 11.36	Cell 7 voltage measurement	
\$3B	MEAS_CELL6	Table 24	Section 11.36	Cell 6 voltage measurement	
\$3C	MEAS_CELL5	Table 24	Section 11.36	Cell 5 voltage measurement	
\$3D	MEAS_CELL4	Table 24	Section 11.36	Cell 4 voltage measurement	
\$3E	MEAS_CELL3	Table 24	Section 11.36	Cell 3 voltage measurement	
\$3F	MEAS_CELL2	Table 24	Section 11.36	Cell 2 voltage measurement	
\$40	MEAS_CELL1	Table 24	Section 11.36	Cell 1 voltage measurement	
\$41	MEAS_AN6	Table 24	Section 11.36	AN6 voltage measurement	
\$42	MEAS_AN5	Table 24	Section 11.36	AN5 voltage measurement	
\$43	MEAS_AN4	Table 24	Section 11.36	AN4 voltage measurement	
\$44	MEAS_AN3	Table 24	Section 11.36	AN3 voltage measurement	
\$45	MEAS_AN2	Table 24	Section 11.36	AN2 voltage measurement	
\$46	MEAS_AN1	Table 24	Section 11.36	AN1 voltage measurement	
\$47	MEAS_AN0	Table 24	Section 11.36	AN0 voltage measurement	
\$48	MEAS_IC_TEMP	Table 24	Section 11.36	IC temperature measurement	

Table 34. Register table...continued

Register		Response	Reference	Description	Notes
A[6:0]	Symbol				
\$49	MEAS_VBG_DIAG_ADC1A	Table 24	Section 11.36	ADCIA voltage reference measurement	
\$4A	MEAS_VBG_DIAG_ADC1B	Table 24	Section 11.36	ADCIB voltage reference measurement	
\$4B	TH_ALL_CT	Table 24	Section 11.37	CTx over and undervoltage threshold	
\$4C	TH_CT14	Table 24	Section 11.38	CT14 over and undervoltage threshold	
\$4D	TH_CT13	Table 24	Section 11.38	CT13 over and undervoltage threshold	
\$4E	TH_CT12	Table 24	Section 11.38	CT12 over and undervoltage threshold	
\$4F	TH_CT11	Table 24	Section 11.38	CT11 over and undervoltage threshold	
\$50	TH_CT10	Table 24	Section 11.38	CT10 over and undervoltage threshold	
\$51	TH_CT9	Table 24	Section 11.38	CT9 over and undervoltage threshold	
\$52	TH_CT8	Table 24	Section 11.38	CT8 over and undervoltage threshold	
\$53	TH_CT7	Table 24	Section 11.38	CT7 over and undervoltage threshold	
\$54	TH_CT6	Table 24	Section 11.38	CT6 over and undervoltage threshold	
\$55	TH_CT5	Table 24	Section 11.38	CT5 over and undervoltage threshold	
\$56	TH_CT4	Table 24	Section 11.38	CT4 over and undervoltage threshold	
\$57	TH_CT3	Table 24	Section 11.38	CT3 over and undervoltage threshold	
\$58	TH_CT2	Table 24	Section 11.38	CT2 over and undervoltage threshold	
\$59	TH_CT1	Table 24	Section 11.38	CT1 over and undervoltage threshold	
\$5A	TH_AN6_OT	Table 24	Section 11.39	AN6 overtemperature threshold	
\$5B	TH_AN5_OT	Table 24	Section 11.39	AN5 overtemperature threshold	
\$5C	TH_AN4_OT	Table 24	Section 11.39	AN4 overtemperature threshold	
\$5D	TH_AN3_OT	Table 24	Section 11.39	AN3 overtemperature threshold	
\$5E	TH_AN2_OT	Table 24	Section 11.39	AN2 overtemperature threshold	
\$5F	TH_AN1_OT	Table 24	Section 11.39	AN1 overtemperature threshold	
\$60	TH_AN0_OT	Table 24	Section 11.39	AN0 overtemperature threshold	

Table 34. Register table...continued

Register		Response	Reference	Description	Notes
A[6:0]	Symbol				
\$61	TH_AN6_UT	Table 24	Section 11.39	AN6 undertemperature threshold	
\$62	TH_AN5_UT	Table 24	Section 11.39	AN5 undertemperature threshold	
\$63	TH_AN4_UT	Table 24	Section 11.39	AN4 undertemperature threshold	
\$64	TH_AN3_UT	Table 24	Section 11.39	AN3 undertemperature threshold	
\$65	TH_AN2_UT	Table 24	Section 11.39	AN2 undertemperature threshold	
\$66	TH_AN1_UT	Table 24	Section 11.39	AN1 undertemperature threshold	
\$67	TH_AN0_UT	Table 24	Section 11.39	AN0 undertemperature threshold	
\$68	TH_ISENSE_OC	Table 24	Section 11.40	ISENSE overcurrent threshold	
\$69	TH_COULOMB_CNT_MSB	Table 24	Section 11.41	Coulomb counter threshold (MSB)	
\$6A	TH_COULOMB_CNT_LSB	Table 24	Section 11.41	Coulomb counter threshold (LSB)	
\$6B	SILICON_REV	Table 24	Section 11.42	Silicon revision	
\$6C	EEPROM_CNTL	Table 24	Section 11.43	EEPROM transfer control	
\$6D	DED_ENCODE1	Table 24	Section 11.44	ECC signature 1	
\$6E	DED_ENCODE2	Table 24	Section 11.45	ECC signature 2	
\$6F	FUSE_MIRROR_DATA	Table 24	Section 11.46	Fuse mirror data	
\$70	FUSE_MIRROR_CNTL	Table 24	Section 11.46	Fuse mirror address	
\$71	Reserved	Table 24	Section 11.47	NXP reserved	
...	Reserved	Table 24	Section 11.47	NXP reserved	
\$7F	Reserved	Table 24	Section 11.47	NXP reserved	

Table 35. Mirror memory

Register		Description	Notes
A[4:0]			
\$00	FUSE_MIRROR_BANK	Fuse bank 0	
\$01	FUSE_MIRROR_BANK	Fuse bank 1	
\$02	FUSE_MIRROR_BANK	Fuse bank 2	
\$03	FUSE_MIRROR_BANK	Fuse bank 3	
\$04	FUSE_MIRROR_BANK	Fuse bank 4	
\$05	FUSE_MIRROR_BANK	Fuse bank 5	
\$06	FUSE_MIRROR_BANK	Fuse bank 6	
\$07	FUSE_MIRROR_BANK	Fuse bank 7	
\$08	FUSE_MIRROR_BANK	Fuse bank 8	

Table 35. Mirror memory...continued

Register	Description	Notes
\$09	FUSE_MIRROR_BANK	Fuse bank 9
\$0A	FUSE_MIRROR_BANK	Fuse bank 10
\$0B	FUSE_MIRROR_BANK	Fuse bank 11
\$0C	FUSE_MIRROR_BANK	Fuse bank 12
\$0D	FUSE_MIRROR_BANK	Fuse bank 13
\$0E	FUSE_MIRROR_BANK	Fuse bank 14
\$0F	FUSE_MIRROR_BANK	Fuse bank 15
\$10	FUSE_MIRROR_BANK	Fuse bank 16
\$11	FUSE_MIRROR_BANK	Fuse bank 17
\$12	FUSE_MIRROR_BANK	Fuse bank 18
\$13	FUSE_MIRROR_BANK	Fuse bank 19
\$14	FUSE_MIRROR_BANK	Fuse bank 20
\$15	FUSE_MIRROR_BANK	Fuse bank 21
\$16	FUSE_MIRROR_BANK	Fuse bank 22
\$17	FUSE_MIRROR_BANK	Fuse bank 23
\$18	FUSE_MIRROR_BANK	Fuse bank 24
\$19	FUSE_MIRROR_BANK	Fuse bank 25
\$1A	FUSE_MIRROR_BANK	Fuse bank 26
\$1B	FUSE_MIRROR_BANK	Fuse bank 27
\$1C	FUSE_MIRROR_BANK	Fuse bank 28
\$1D	FUSE_MIRROR_BANK	Fuse bank 29
\$1E	FUSE_MIRROR_BANK	Fuse bank 30
\$1F	FUSE_MIRROR_BANK	Fuse bank 31

11.2 Initialization register – INIT

Following power-up or soft POR, the MC33771C is in a reset state. In the INIT mode, the user may read the registers of the MC33771C using the cluster id 00 0000b. The MC33771C must be enumerated before it acts upon to write commands.

To initialize the device, a write command has to be sent with the value of 00 0000b in the cluster Identifier field of the frame, [Section 10.4.2](#), with the new cluster ID, that is the new address to be assigned to the node, must be written to the CID field of the INIT register. Only a device with current cluster ID of 00 0000b may be programmed to a new address. By programming the device with a new CID the device is considered enumerated. After a device has been initialized, it only acts on subsequent global write (transformer mode) or local write and responds to read commands matching the device cluster ID. Once a device has been enumerated, the CID bits in the register INIT cannot be reprogrammed unless the device receives a hard or soft reset.

The bit field INIT[TPLx_TX_TERM] is used for preventing pins (RDTX_IN/OUT \pm) from floating when the MC33771Cs are connected in single ended daisy chain (without loop-back). It is to be noted that this applies only to last node in the daisy chain. Depending on which pin (RDTX_IN \pm or RDTX_OUT \pm) of last node is floating, INIT[TPLx_TX_TERM] should be set to 1. The MC33771C IC used in daisy chain communication

with loop-back shall have the bit fields INIT[TPLx_TX_TERM] set to zero while for single ended daisy chain communication (without loop-back) the floating TPL port shall be set to 1.

Table 36. INIT

INIT																	
\$01	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write									TPL1_ TX_ TERM	TPL2_ TX_ TERM	CID						
Read	0	0	0	0	0	0	0	0									
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TPL_TX_ Termination (RDTX_IN)	Description		Enable for TPL port termination for RDTX_IN pin														
	0		Disabled														
	1		Enabled														
	Reset condition		POR														
TPL-TX_ Termination (RDTX_OUT)	Description		Enable for TPL port termination for RDTX_OUT pin														
	0		Disabled														
	1		Enabled														
	Reset condition		POR														
CID	Description		Cluster Identifier, can be overridden by any combination different from all zeros. Not accessible with global write.														
	0 0 0 0 0 0		Default														
	x x x x x x		CID														
	Reset condition		POR														

11.3 System configuration global register SYS_CFG_GLOBAL

In TPL mode, only a global command can be used to write to register \$02, while a local write is disregarded. In contrast, if using the SPI mode, only a local write to register \$02 can be executed.

Table 37. SYS_CFG_GLOBAL

SYS_CFG_GLOBAL																	
\$02	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write																	GO2 SLEEP
Read	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
GO2SLEEP	Description		Go to sleep command														
	0		Disabled														
	1 (active pulse)		Device goes to sleep mode after all conversions in progress are completed														
	Reset condition		POR														

11.4 System configuration register 1 – SYS_CFG1

The SYS_CFG1 register contains control bits and register settings that allow the user to adapt the MC33771C to specific applications and system requirements. Of these control bits, it is important to note the SYS_CFG1[SOFT_RST] bit is used to reset register contents of the device.

Table 38. SYS_CFG1

SYS_CFG1																	
\$03	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write	CYCLIC_TIMER			DIAG_TIMEOUT			I_MEAS_EN	Do not change	CB_DRVEN	GO2DIAG	CB_MANUAL_PAUSE	SOFT_RST	FAULT_WAVE	WAVE_DC_BITx	x		
Read							DIAG_ST			0							
Reset	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	
CYCLIC_TIMER	Description		Timer to trigger cyclic measurements in normal mode or sleep mode														
	0 0 0		Cyclic measure is disabled, whatever the mode														
	0 0 1		Continuous measurements														
	0 1 0		0.1 s														
	0 1 1		0.2 s														
	1 0 0		1.0 s														
	1 0 1		2.0 s														
	1 1 0		4.0 s														
	1 1 1		8.0 s														
	Reset condition		POR														
DIAG_TIMEOUT	Description		DIAG mode timeout. Length of time the device is allowed to be in diag mode before being forced to normal mode.														
	0 0 0		No timer, not allowed to enter diag mode														
	0 0 1		0.05 s														
	0 1 0		0.1 s														
	0 1 1		0.2 s														
	1 0 0		1.0 s														
	1 0 1		2.0 s														
	1 1 0		4.0 s														
	1 1 1		8.0 s														
	Reset condition		POR														
I_MEAS_EN	Description		Enable for current measurement chain														
	0		Disabled														
	1		Current measurement chain is enabled														
	Reset condition		POR														
CB_DRVEN	Description		General enable or disable for all cell balance drivers.														
	0		Disabled														
	1		Enabled, each cell balance driver can be individually switched on and off by CB_xx_CFG register.														
	Reset condition		POR														
GO2DIAG	Description		Commands the device to diag mode. Rewriting the GO2DIAG bit restarts the DIAG_TIMEOUT.														
	0		Exit diag mode														
	1		Enter diag mode (starts timer)														
	Reset condition		POR														

Table 38. SYS_CFG1...continued

CB_MANUAL_PAUSE	Description	Cell balancing manual pause
	0	Disabled CB switches can be normally commanded on/off by the dedicated logic functions
	1	CB switches are forced off, CB counters are not frozen
	Reset condition	POR
DIAG_ST	Description	Identifies when the device is in diag mode
	0	System is not in diag mode
	1	System is in diag mode
	Reset condition	POR
SOFT_RST	Description	Software reset
	0	Disabled
	1 (active pulse)	Active software reset
	Reset condition	POR (bit is not reset if reset was due to software reset)
FAULT_WAVE	Description	FAULT pin wave form control bit.
	0	FAULT pin has high or low level behavior. FAULT pin high, fault is present. FAULT pin low indicates no fault present.
	1	FAULT pin has heartbeat wave when no fault is present. Pulse high time is fixed at 500 µs.
	Reset condition	POR
WAVE_DC_BITx	Description	Controls the off time of the heartbeat pulse.
	0 0	500 µs
	0 1	1.0 ms
	1 0	10 ms
	1 1	100 ms
	Reset condition	POR

11.5 System configuration register 2 – SYS_CFG2

Table 39. SYS_CFG2

SYS_CFG2																	
\$04	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write	x	x	x				FLT_RST_CFG ^[1]				TIMEOUT_COMM				x	x	
Read	x	x	x	PREVIOUS_STATE											x	x	
Reset	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	
PREVIOUS_STATE	Description		Information about the previous state of the device														
	0 0 0		The device is coming from INIT state														
	0 0 1		The device is coming from IDLE state														
	0 1 0		The device is coming from NORMAL state														
	0 1 1		The device is coming from DIAG state														
	1 1 1		The device is coming from SLEEP state														
	1 1 0		The device is coming from CYCLIC_WUP state														
	Reset condition		POR														
TIMEOUT_COMM	Description		No communication timeout - flag in FAULT1_STATUS[COM_LOSS] if no communication during...														
	0 0		32 ms														
	0 1		64 ms														
	1 0		128 ms														

Table 39. SYS_CFG2...continued

	1 1	256 ms
	Reset condition	POR
FLT_RST_CFG	Description	Fault reset configuration ^[2]
	0 0 1 1	Disabled COM timeout (1024 ms) reset and OSC fault monitoring and reset
	0 1 0 1	Enabled OSC fault monitoring
	0 1 1 0	Enabled OSC fault monitoring and reset
	1 0 0 1	Enabled COM timeout (1024 ms) reset
	1 0 1 0	Enabled COM timeout (1024 ms) reset and OSC fault monitoring
	1 1 0 0	Enabled COM timeout (1024 ms) reset and OSC fault monitoring and reset
	others	Invalid, leads to enabled COM timeout (1024 ms) reset and OSC fault monitoring and reset (1100)
	Reset condition	POR (except after a reset caused by a communication timeout or caused by an oscillator fault)
NUMB_ODD	Description	Odd number of cells in the cluster (useful for open load diagnosis)
	0	Even configuration
	1	Odd configuration
	Reset condition	POR
HAMM_ENCOD	Description	Hamming encoders
	0	Decode - the DED Hamming decoders fulfill their job
	1	Encode - the DED hamming decoders generate the redundancy bits
	Reset condition	POR

[1] The Go2Reset option should not be disabled after a communication time out

[2] For more information, refer to [Figure 8](#)

11.6 System diagnostics register – SYS_DIAG

Table 40. SYS_DIAG

SYS_DIAG																
\$05	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	FAULT_DIAG	0	0	I_MUX		ISENSE_OL_DIAG	ANx_OL_DIAG	ANx_TEMP_DIAG	DA_DIAG	POL_ARITY	CT_LEAK_DIAG	CT_OV_UV	CT_OL_ODD	CT_OL_EVEN	CB_OL_ODD	CB_OL_EVEN
Read				0	0	0	0	0	0	0	0	0	0	0	0	0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FAULT_DIAG	Description		FAULT pin driver command													
	0		No FAULT pin drive, FAULT pin is under command of the pack controller													
	1		FAULT pin is forced to high level													
	Reset condition		POR													
I_MUX	Description		Allows user to select between various inputs to PGA to be converted by ADC2													
	0 0		(ISENSE+, ISENSE-)													
	0 1		(GPIO5, GPIO6)													
	1 0		Calibrated internal reference (VREF_DIAG)													
	1 1		PGA zero (PGA differential inputs terminated to ground)													
	Reset condition		POR													
ISENSE_OL_DIAG	Description		ISENSE open load diagnostic control bit. Enables or disables internal pull-up resistors on the ISENSE input pins.													
	0		Disabled													
	1		Enabled													
	Reset condition		POR													
ANx_OL_DIAG	Description		ANx open load diagnostic control bit. Used to activate the pull down on GPIO input pins.													
	0		Diagnostic disabled													
	1		Diagnostic enabled													
	Reset condition		POR													
ANx_TEMP_DIAG	Description		Control bit to activate the OT/UT diagnostic on GPIOx configured as ANx ratiometric or single ended ADC input													

Table 40. SYS_DIAG...continued

DA_DIAG	0	Diagnostic inactive
	1	Diagnostic active
	Reset condition	POR
	Description	Cell voltage channel functional verification. Diagnostic mode function only
POLARITY	0	No check
	1	Check is enabled (floating Zener conversion, ground Zener measurement added, comparison)
	Reset condition	POR
	Description	Control bit used in terminal leakage detection. Controls the polarity between the level shifter and the ADC1-A and ADC1-B converters
CT_LEAK_DIAG	0	Noninverted
	1	Inverted
	Reset condition	POR
	Description	Control bit used in terminal leakage detection. Commands the MUX to route the CTx/CBx pin to ADC1-A,B converters. This bit must be exclusive vs. DA_DIAG.
CT_OV_UV	0	Normal operation, CTx are MUXed to converter
	1	Δ between CT and CB pins are routed to the analog front end, to be converted
	Reset condition	POR
	Description	OV and UV diagnostic is enabled. This bit must be set to logic 0 when performing CT open load diagnostic.
CT_OL_ODD	0	OV and UV diagnostic disabled
	1	OV and UV diagnostic enabled
	Reset condition	POR
	Description	Control bit used to control the odd numbered cell terminal open detect switches
CT_OL_EVEN	0	Odd switches are open
	1	Odd switches are closed (may be set only when CT_OL_ODD is logic 0)
	Reset condition	POR
	Description	Control bit used to control the even numbered cell terminal open detect switches
CB_OL_ODD	0	Even switches are open
	1	Even switches are closed (may be set only when CT_OL_EVEN is logic 0)
	Reset Condition	POR
	Description	Control bit used to control the cell balance open load ODD detection switches.
CB_OL_EVEN	0	ODD cell balance open load detection switches are open
	1	ODD cell balance open load detection switches are closed
	Reset Condition	POR
	Description	Control bit used to control the cell balance open load EVEN detection switches
	0	EVEN cell balance open load detection switches are open
	1	EVEN cell balance open load detection switches are closed
	Reset condition	POR

11.7 ADC configuration register – ADC_CFG

The ADC_CFG is used to set the conversion parameters of the three ADC converters and command the MC33771C to perform on-demand conversions in both normal and diagnostic modes.

Table 41. ADC_CFG

ADC_CFG																	
\$06	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write	AVG				SOC	PGA_GAIN			CC_RST	x	ADC1_A_DEF		ADC1_B_DEF		ADC2_DEF		
					EOC_N	PGA_GAIN_S			0	x							
Reset	0	0	0	0	0	1	0	0	0	0	0	1	0	1	1	1	
AVG	Description		With each conversion request, the number of samples to be averaged can be configured														
	0 0 0 0		No averaging, the result is taken as is (compatibility mode)														
	0 0 0 1		Averaging of 2 consecutive samples														
	0 0 1 0		Averaging of 4 consecutive samples														

Table 41. ADC_CFG...continued

	0 0 1 1	Averaging of 8 consecutive samples
	0 1 0 0	Averaging of 16 consecutive samples
	0 1 0 1	Averaging of 32 consecutive samples
	0 1 1 0	Averaging of 64 consecutive samples
	0 1 1 1	Averaging of 128 consecutive samples
	1 0 0 0	Averaging of 256 consecutive samples
	All other Configurations	No averaging, the result is taken as is (compatibility mode)
	Reset condition	POR
SOC	Description	Control bit to command the MC33771C to initiate a conversion sequence
	0	Disabled. Writing SOC to 0 has no effect on an ongoing conversion sequence.
	1 (active pulse)	Enabled. Initiate a conversion sequence.
	Reset condition	POR
EOC_N	Description	End of conversion flag
	0	Device has completed the commanded conversion
	1	Device is performing the commanded conversion
	Reset condition	POR
PGA_GAIN	Description	Define the gain of the ADC2 programmable gain amplifier
	0 0 0	4
	0 0 1	16
	0 1 0	64
	0 1 1	256
	1 x x	Automatic gain selection (internally adjusted)
PGA_GAIN_S	Reset condition	POR
	Description (bit 10)	Automatic gain mode status (information available only if SYS_CFG1[I_MEAS_EN] = 1)
	0	Fixed gain
	1	Automatic gain control
	Reset condition	POR
	Description (bit[9:8])	Report the current gain of the ADC2 programmable gain amplifier (automatically settled or not). (information available only if SYS_CFG1[I_MEAS_EN] = 1)
	0 0	4
	0 1	16
	1 0	64
	1 1	256
CC_RST	Reset condition	POR
CC_RST	Description	Control bit used to reset the value of the coulomb counter to 0
	0	No action
	1 (active pulse)	Reset coulomb counter registers COULOMB_CNT1 and COULOMB_CNT2 and the CC_NB_SAMPLES registers
ADC1_A_DEF	Reset condition	POR
	Description	ADC1_A measurement resolution
	0 0	13 bit
	0 1	14 bit
	1 0	15 bit
	1 1	16 bit
ADC1_B_DEF	Reset condition	POR
	Description	ADC1_B measurement resolution

Table 41. ADC_CFG...continued

	0 0	13 bit
	0 1	14 bit
	1 0	15 bit
	1 1	16 bit
	Reset condition	POR
ADC2_DEF	Description	ADC2 measurement resolution
	0 0	13 bit
	0 1	14 bit
	1 0	15 bit
	1 1	16 bit
	Reset condition	POR

11.8 Current measurement chain offset compensation – ADC2_OFFSET_COMP

This register contains an 8-bit signed data (two's complement). The content of the offset compensation register is added directly to the data at the end of the channel measurement, independent on the PGA gain. Even though the current channel is fully offset compensated, the PCB HW introduces an extra offset that can be compensated by means of this data. This register provides several bits that are able to influence the behavior of the coulomb counter.

Table 42. ADC2_OFFSET_COMP

ADC2_OFFSET_COMP																	
\$07	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write	CC_RST_CFG	FREE_CNT	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	x	ALLCBOFF_ON_SHORT	ADC2_OFFSET_COMP								
Read			CC_P_OVF	CC_N_OVF	SAMP_OVF	CC_OVT	x										
Reset	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CC_RST_CFG	Description		Configuration of the action linked to the read of coulomb count results														
	0		No linked action														
	1		Reading any CC register (from @ \$2D to @ \$2F) also resets the coulomb counters														
	Reset condition		POR														
FREE_CNT	Description		Configuration of the free running coulomb counters														
	0		No free-running, coulomb counters clamp on min/max values														
	1		Free-running mode. No clamp but rollover														
	Reset condition		POR														
CC_P_OVF	Description		Overflow indicator on the COULOMB_CNT1,2[COULOMB_CNT]														
	0		No overflow														
	1		COULOMB_CNT1,2[COULOMB_CNT] went in overflow														
	Reset condition		POR / clear on write 0														
CC_N_OVF	Description		Underflow indicator on the COULOMB_CNT1,2[COULOMB_CNT]														
	0		No underflow														
	1		COULOMB_CNT1,2[COULOMB_CNT] went in underflow														
	Reset condition		POR / clear on write 0														
SAMP_OVF	Description		Overflow indicator on the CC_NB_SAMPLES														
	0		No underflow														
	1		CC_NB_SAMPLES went in overflow														
	Reset condition		POR / clear on write 0														

Table 42. ADC2_OFFSET_COMP...continued

CC_OVT	Description	Overthreshold indicator on the COULOMB_CNT1,2[COULOMB_CNT]
	0	No over threshold
	1	COULOMB_CNT1,2[COULOMB_CNT] went in over threshold (TH_COULOMB_CNT)
	Reset condition	POR / clear on write 0
ALLCBOFF_ON_SHORT	Description	All CB's turn off in case of at least one short
	0	Only shorted CB's are turned off
	1	If at least one CB is shorted, all CB's are then turned off (CB_DRVEN is reset)
	Reset condition	POR
ADC2_OFFSET_COMP	Description	Offset value, signed (two's complement) with V_{2RES} resolution. It can be used to compensate for a PCB offset.
	Reset condition	POR

[1] w0c: write 0 to clear

11.9 Cell select register – OV_UV_EN

The user has the option to select a common overvoltage and undervoltage threshold, or individual thresholds for each cell. To use a common threshold for all cell terminal inputs, the user must program register TH_ALL_CT and enable the common threshold bit. An individual threshold may be programmed for each cell terminal through register TH_CTx. Either threshold selection requires the CTx_OVUV_EN bit be set for the MC33771C to monitor the cell terminal input for over and undervoltage.

Table 43. OV_UV_EN

OV_UV_EN																
\$00	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	COMMON_OV_TH	COMMON_OV_TH	CT14_OVUV_EN	CT13_OVUV_EN	CT12_OVUV_EN	CT11_OVUV_EN	CT10_OVUV_EN	CT9_OVUV_EN	CT8_OVUV_EN	CT7_OVUV_EN	CT6_OVUV_EN	CT5_OVUV_EN	CT4_OVUV_EN	CT3_OVUV_EN	CT2_OVUV_EN	CT1_OVUV_EN
Read	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Reset	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Description																
All CTx measurement use the common overvoltage threshold register for comparison																
0																
1																
Reset condition																
POR																
Description																
All CTx measurement use the common undervoltage threshold register for comparison																
0																
1																
Reset condition																
POR																
Description																
Enable or disable ADC data to be compared with thresholds for OVUV. If disabled no OVUV fault is set.																
0																
1																
Reset condition																
POR																

11.10 Cell terminal overvoltage fault register – CELL_OV_FLT

The CELL_OV_FLT register contains the overvoltage fault status of each cell. The CELL_OV_FLT register is updated with each cyclic conversion and each on-demand conversion from the system controller. In normal mode, the CTx_OV_FLT bit may be cleared by writing logic 0 when overvoltage is no longer present at the cell terminal inputs.

Table 44. CELL_OV_FLT

CELL_OV_FLT																	
\$09	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write			w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	
Read	0	0	CT14_OV_FLT	CT13_OV_FLT	CT12_OV_FLT	CT11_OV_FLT	CT10_OV_FLT	CT9_OV_FLT	CT8_OV_FLT	CT7_OV_FLT	CT6_OV_FLT	CT5_OV_FLT	CT4_OV_FLT	CT3_OV_FLT	CT2_OV_FLT	CT1_OV_FLT	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CTx_OV_FLT	Description		CTx_OV_FLT register contains the status of the overvoltage fault for each cell terminal. Register is updated with each internal and system controller on-demand conversion cycle.														
	0		No Cell Terminal overvoltage														
	1		Cell Terminal overvoltage detected on terminal x														
	Reset condition		POR/clear on write 0														

[1] w0c: write 0 to clear

11.11 Cell terminal undervoltage fault register – CELL_UV_FLT

The CELL_UV_FLT register contains the undervoltage fault status of each cell. The CELL_UV_FLT register is updated with each cyclic conversion and each on-demand conversion from the system controller. In normal mode, the CTx_UV_FLT bit may be cleared by writing logic 0 when undervoltage is no longer present at the cell terminal inputs.

Table 45. CELL_UV_FLT

CELL_UV_FLT																	
\$0A	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write			w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	
Read	0	0	CT14_UV_FLT	CT13_UV_FLT	CT12_UV_FLT	CT11_UV_FLT	CT10_UV_FLT	CT9_UV_FLT	CT8_UV_FLT	CT7_UV_FLT	CT6_UV_FLT	CT5_UV_FLT	CT4_UV_FLT	CT3_UV_FLT	CT2_UV_FLT	CT1_UV_FLT	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CTx_UV_FLT	Description		CTx_UV_FLT register contains the status of the undervoltage fault for each cell terminal. Register is updated with each internal and system controller requested conversion cycle.														
	0		No cell terminal undervoltage														
	1		Cell terminal undervoltage detected on terminal x														
	Reset condition		POR/clear on write 0														

[1] w0c: write 0 to clear

11.12 TPL_CFG

TPL_CFG register configures up and down transmitter. It allows the pack controller to configure transmitter drive strength based on capacitive or transformer isolation and selection of differential load termination.

Table 46. TPL_CFG

TPL_CFG																
\$0B	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
W/rite	Do not change															
Read																
Reset	0	1	1	0	0	0	1	0	0	1	1	0	0	0	1	0

Note: The default value TPL_CFG register is set considering a transmission line of 120 Ω .

11.13 Cell balance configuration register – CBx_CFG

The cell balance configuration register holds the operating parameters of the cell balance output drivers.

Table 47. CBx_CFG

CBx_CFG																	
\$0C to \$19	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9		bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
W/rite							CBx_EN	CBx_TIMER									
Read	0	0	0	0	0	0	CBx_STS										
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CBx_EN	Description		Cell balance enable														
	0		Cell balance driver disabled														
	1		Cell balance is enabled or re-launched if overwritten (restarts the timer count from zero and enables the driver)														
	Reset condition		POR														
CBx_STS	Description		Cell balance driver status														
	0		Cell balance driver is off														
	1		Cell balance driver is on														
	Reset condition		POR														
CBx_TIMER	Description		Cell balance timer in minutes														
	000000000		0.5 minutes														
	000000001		1 minute														
	000000010		2 minutes														
	...																
	111111111		511 minutes														
	Reset condition		POR														

11.14 Cell balance open load fault detection register – CB_OPEN_FLT

Table 48. CB_OPEN_FLT

CB_OPEN_FLT																	
\$1A	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write			w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	
Read	0	0	CB14_ OPEN_ FLT	CB13_ OPEN_ FLT	CB12_ OPEN_ FLT	CB11_ OPEN_ FLT	CB10_ OPEN_ FLT	CB9_ OPEN_ FLT	CB8_ OPEN_ FLT	CB7_ OPEN_ FLT	CB6_ OPEN_ FLT	CB5_ OPEN_ FLT	CB4_ OPEN_ FLT	CB3_ OPEN_ FLT	CB2_ OPEN_ FLT	CB1_ OPEN_ FLT	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CBx_OPEN_ FLT	Description		Cell balancing open load detection – (info) Logic OR of CBx_OPEN_FLT is provided in the FAULT2_STATUS[CB_OPEN_FLT]														
	0		No open load cell balance fault detected														
	1		Off state open load detected														
	Reset condition		POR/Clear on write 0														

[1] w0c: write 0 to clear

11.15 Cell balance shorted load fault detection register – CB_SHORT_FLT

The cell balance short detection register holds the cell balance shorted load status.

Table 49. CB_SHORT_FLT

CB_SHORT_FLT																	
\$1B	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write			w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	
Read	0	0	CB14_ SHORT_ FLT	CB13_ SHORT_ FLT	CB12_ SHORT_ FLT	CB11_ SHORT_ FLT	CB10_ SHORT_ FLT	CB9_ SHORT_ FLT	CB8_ SHORT_ FLT	CB7_ SHORT_ FLT	CB6_ SHORT_ FLT	CB5_ SHORT_ FLT	CB4_ SHORT_ FLT	CB3_ SHORT_ FLT	CB2_ SHORT_ FLT	CB1_ SHORT_ FLT	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CBx_SHORT_FLT	Description		Cell balancing shorted load fault detection – (info) CBx_SHORT_FLT Ored is provided in the FAULT2[CB_SHORT_FLT]														
	0		No shorted load fault detected														
	1		Shorted load fault detected														
	Reset condition		POR/clear on write 0														

[1] w0c: write 0 to clear

11.16 Cell balance driver on/off status register – CB_DRV_STS

Table 50. CB_DRV_STS

CB_DRV_STS																	
\$1C	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write																	
Read	0	0	CB14_ STS	CB13_ STS	CB12_ STS	CB11_ STS	CB10_ STS	CB9_ STS	CB8_ STS	CB7_ STS	CB6_ STS	CB5_ STS	CB4_ STS	CB3_ STS	CB2_ STS	CB1_ STS	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CBx_STS	Description		Contains the state of the cell balance driver														
	0		Driver CBx is off														
	1		Driver CBx is on														

Table 50. CB_DRV_STS...continued

	Reset condition	POR
--	-----------------	-----

11.17 GPIO configuration register 1 – GPIO_CFG1

The GPIO_CFG1 register programs the individual GPIO port as a ratiometric, single ended, input or output port.

Table 51. GPIO_CFG1

GPIO_CFG1																		
\$1D	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
Write			GPIO6_CFG			GPIO5_CFG			GPIO4_CFG			GPIO3_CFG			GPIO2_CFG		GPIO1_CFG	GPIO0_CFG
Read	0	0																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
GPIOx_CFG	Description		Register controls the configuration of the GPIO port															
	0 0		GPIOx configured as analog input for ratiometric measurement															
	0 1		GPIOx configured as analog input for absolute measurement															
	1 0		GPIOx configured as digital input															
	1 1		GPIOx configured as digital output															
	Reset condition		POR															

11.18 GPIO configuration register 2 – GPIO_CFG2

Table 52. GPIO_CFG2

GPIO_CFG2																	
\$1E	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write							GPIO2_SOC	GPIO0_WU	GPIO0_FLT_ACT	GPIO6_DR	GPIO5_DR	GPIO4_DR	GPIO3_DR	GPIO2_DR	GPIO1_DR	GPIO0_DR	
Read	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
GPIO2_SOC	Description		GPIO2 used as ADC1_A/ADC1_B start-of-conversion. Requires GPIO2_CFG = 10.														
	0		GPIO2 port ADC trigger is disabled														
	1		GPIO2 port ADC trigger is enabled. A rising edge on GPIO2 triggers an ADC1-A and ADC1-B conversion – only when in normal mode														
	Reset condition		POR														
GPIO0_WU	Description		GPIO0 wake-up capability. Valid only when GPIO0_CFG = 10.														
	0		No wake-up capability														
	1		Wake-up on any edge, transitioning the system from sleep to normal														
	Reset condition		POR														
GPIO0_FLT_ACT	Description		GPIO0 activate fault output pin. Valid only when GPIO0_CFG = 10.														
	0		Does not activate FAULT pin when GPIO0 is configured as an input and is logic 1														
	1		Activates the FAULT pin when GPIO is configured as an input and is logic 1														
	Reset condition		POR														
GPIOx_DR	Description		GPIOx pin drive. Ignored except when GPIOx_CFG = 11														
	0		Drive GPIOx to low level														
	1		Drive GPIOx to high level														
	Reset condition		POR														

11.19 GPIO status register – GPIO_STS

Table 53. GPIO_STS

GPIO_STS																	
\$1F	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write		w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]									
Read	0	GPIO6_H	GPIO5_H	GPIO4_H	GPIO3_H	GPIO2_H	GPIO1_H	GPIO0_H	0	GPIO6_ST	GPIO5_ST	GPIO4_ST	GPIO3_ST	GPIO2_ST	GPIO1_ST	GPIO0_ST	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
GPIOx_H	Description		The GPIOx_H bits detects and latches the low to high transition occurring on the GPIOx input														
	0		No high state detected														
	1		A high state has been detected														
	Reset condition		POR/clear on write 0														
GPIOx_ST	Description		Real time GPIOx status														
	0		Report GPIOx at low level														
	1		Report GPIOx at high level														
	Reset condition		POR														

[1] w0c: write 0 to clear

11.20 Overtemperature/undertemperature fault register – AN_OT_UT_FLT

Table 54. AN_OT_UT_FLT

AN_OT_UT_FLT																	
\$20	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write		w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]		w0c ^[1]							
Read	0	AN6_OT	AN5_OT	AN4_OT	AN3_OT	AN2_OT	AN1_OT	AN0_OT	0	AN6_UT	AN5_UT	AN4_UT	AN3_UT	AN2_UT	AN1_UT	AN0_UT	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Anx_OT	Description		Overtemperature detection for AN n ^x – Anx_OT ored is provided in FAULT1_STATUS[AN_OT_FLT]														
	0		No overtemperature fault detected														
	1		Overtemperature fault detected on Anx														
	Reset condition		POR/clear on write 0 (Anx_OT is set again on next cyclic conversion or on-demand conversion if overtemperature persists)														
Anx_UT	Description		Undertemperature detection for AN n ^x – Anx_UT ored is provided in FAULT1_STATUS[AN_UT_FLT]														
	0		No undertemperature fault detected														
	1		Undertemperature fault detected on Anx														
	Reset condition		POR/clear on write 0 (Anx_UT is set again on next cyclic conversion or on-demand conversion if undertemperature persists)														

[1] w0c: write 0 to clear

11.21 GPIO open short register – GPIO_SHORT_ANx_OPEN_STS

Table 55. GPIO_SHORT_ANx_OPEN_STS

GPIO_SHORT_ANx_OPEN_STS																	
\$21	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write		w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]		w0c ^[1]							
Read	0	GPIO6_SH	GPIO5_SH	GPIO4_SH	GPIO3_SH	GPIO2_SH	GPIO1_SH	GPIO0_SH	0	AN6_OPEN	AN5_OPEN	AN4_OPEN	AN3_OPEN	AN2_OPEN	AN1_OPEN	AN0_OPEN	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
GPIOx_SH	Description		GPIOx short detection GPIOx_SH ored is provided in FAULT2_STATUS[GPIO_SHORT_FLT]														

Table 55. GPIO_SHORT_ANx_OPEN_STS...continued

ANx_OPEN	0	No short detected
	1	Short detected, pad sense is different from pad command
	Reset condition	POR/clear on write 0
	Description	Analog inputs open load detection. ANx_OPEN 0ed is provided in FAULT2_STATUS[AN_OPEN_FLT]
	0	No open load detected
	1	Open load detected on Anx
	Reset condition	POR/Clear On Write 0 (ANx_OPEN is set again with open load detect switch closed and open load persists)

[1] w0c: write 0 to clear

11.22 Current measurement status register – I_STATUS

Table 56. I_STATUS

I_STATUS																
\$22	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write																
Read	PGA_DAC										0	0	0	0	0	0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PGA_DAC	Description	DAC code														
	0 0 0 0 0 0 0 0	DAC code is initially all zeros														
	1 1 1 1 1 1 1 1	DAC code to be provided to the PGA (for offset cancellation), calculated through an autozero phase														
	Reset condition	POR														

11.23 Communication status register – COM_STATUS

Table 57. COM_STATUS

COM_STATUS																
\$23	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	w0c ^[1]															
Read	COM_ERR_COUNT										0	0	0	0	0	0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COM_ERR_COUNT	Description	Number of communication errors detected														
	0 0 0 0 0 0 0	0 communication errors have been detected														
	...															
	1 1 1 1 1 1 1 1	255 communication errors have been detected. Overflow of counter sets FAULT1_STATUS[COMM_ERR_OVR_FLT]. Count remains at 255 until cleared by controller.														
	Reset condition	POR/clear on write 0														

[1] w0c: write 0 to clear

11.24 Fault status register 1 – FAULT1_STATUS

Table 58. FAULT1_STATUS

FAULT1_STATUS																
\$24	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]				
Read	POR	RESET	COM_ FLT	VPWR_ OV_ FLT	VPWR_ LV_ FLT	COM_ LOSS_ FLT	COM_ ERR_ FLT	CSB_ WUP_ FLT	GPIO0_ WUP_ FLT	I2C_ ERR_ FLT	IS_ OL_ FLT	IS_ OC_ FLT	AN_ OT_ FLT	AN_ UT_ FLT	CT_ OV_ FLT	CT_ UV_ FLT
Reset	1	0**	0*	0*	0*	0**	0*	0	0	0	0	0	0	0	0	0

Notes:

1. Depending on the voltage conditions occurring on some pins at the IC initialization, the initial value of bits marked by an * may be flipped.
2. Values marked ** may be flipped at reset, depending on its cause (see bit descriptions).

POR	Description	Power on reset indication (POR)
	0	No POR
	1	Device has PORed
	Reset condition	POR/clear on write 0
RESET_FLT	Description	RESET Indication (nonmaskable)
	0	No reset
	1	Device has been reset through the RESET pin or by a write command setting the SYS_CFG1[SOFT_RST] or by a communication loss or an oscillator monitoring fault
	Reset condition	POR/clear on write 0
COM_ERR_ OVR_FLT	Description	Overflow indicator on the COM_STATUS[COM_ERR_COUNT]
	0	No error
	1	COM_STATUS[COM_ERR_COUNT] went in overflow
	Reset condition	POR/clear on write 0
VPWR_OV_ FLT	Description	VPWR overvoltage notification
	0	No overvoltage (VPWR < VPWR(OV_FLAG)) detected
	1	Overvoltage detected (VPWR > VPWR(OV_FLAG), timing filtered)
	Reset condition	POR/clear on write 0
VPWR_LV_ FLT	Description	VPWR low-voltage notification
	0	No low-voltage (VPWR > VPWR(LV_FLAG)) detected
	1	Low-voltage detected (VPWR < VPWR(LV_FLAG), timing filtered)
	Reset condition	POR/clear on write 0
COM_LOSS_ FLT	Description	In normal mode, each slave device must receive a local message within the programmed period or COM_LOSS_FLT flag is set
	0	No error
	1	Communication loss detected after a reset due to a communication loss
	Reset condition	POR/clear on write 0 (bit is not cleared if reset was caused by a communication loss)

Table 58. FAULT1_STATUS...continued

COM_ERR_FLT	Description	Communication error detected
	0	No error
	1	An error has been detected during a communication
	Reset condition	POR/clear on write 0
CSB_WUP_FLT	Description	CSB wake-up notification
	0	No wake-up
	1	CSB wake-up detected
	Reset condition	POR/clear on write 0
GPIO0_WUP_FLT	Description	GPIO0_wake-up notification
	0	No wake-up
	1	GPIO0 wake-up detected
	Reset condition	POR/clear on write 0
I2C_ERR_FLT	Description	I ² C communication error during the transfer from EEPROM to the IC
	0	No Error
	1	Error detected
	Reset condition	POR/clear on write 0
IS_OL_FLT	Description	ISENSE pins open load detected
	0	No open load detected
	1	Open load detected in one or both ISENSE pins
	Reset Condition	POR/ clear on write 0
IS_OC_FLT	Description	ISENSE overcurrent detected (sleep mode only)
	0	No overcurrent detected
	1	Overcurrent detected from ISENSE inputs
	Reset condition	POR/Clear On write 0
AN_OT_FLT	Description	Analog input overtemperature detection
	0	No overtemperature detected
	1	Overtemperature detected in one or more of the Anx analog inputs
	Reset condition	POR/Clear On Write 0 all AN_OT_UT[Anx_OT] bits
AN_UT_FLT	Description	Analog inputs undertemperature detection
	0	No undertemperature detected
	1	Undertemperature detected in at least one of the seven analog inputs
	Reset condition	POR/Clear On Write 0 all AN_OT_UT[ANx_UT] bits
CT_OV_FLT	Description	Cell terminal overvoltage detection
	0	No overvoltage detected
	1	Overvoltage detected in one or more of the 14 cell terminals

Table 58. FAULT1_STATUS...continued

	Reset condition	POR/clear on write 0 all CELL_OV[CTx_OV] bits
CT_UV_FLT	Description	Cell terminal undervoltage detection
	0	No undervoltage detected
	1	Undervoltage detection in at least one of the 14 cell terminals
	Reset condition	POR/clear on write 0 all CELL_UV[CTx_UV] bits

[1] w0c: write 0 to clear

11.25 Fault status register 2 – FAULT2_STATUS

Table 59. FAULT2_STATUS

FAULT2_STATUS																
\$25	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	w0c ^[1]					w0c ^[1]	w0c ^[1]	w0c ^[1]								
Read	VCOM_OV_FLT	VCOM_UV_FLT	VANA_OV_FLT	VANA_UV_FLT	ADC1_B_FLT	ADC1_A_FLT	GND_LOSS_FLT	IC_TSD_FLT	IDLE_MODE_FLT	AN_OPEN_FLT	GPIO_SHORT_FLT	CB_SHORT_FLT	CB_OPEN_FLT	OSC_ERR_FLT	DED_ERR_FLT	FUSE_ERR_FLT
Reset	0*	0*	0*	0*	0	0	0*	0	0	0	0	0	0	0*	0*	0**

Notes:

1. Depending on the voltage conditions occurring on some pins at the IC initialization, the initial value of bits marked by an * may be flipped.
2. Values marked ** may be flipped at reset, depending on its cause (see bit descriptions).

	Description	VCOM overvoltage notification
VCOM_OV_FLT	0	No overvoltage detected
	1	Overvoltage has been detected on VCOM supply
	Reset condition	POR/clear on write 0
VCOM_UV_FLT	Description	VCOM undervoltage notification
	0	No undervoltage detected
	1	Undervoltage has been detected on VCOM supply
	Reset Condition	POR/clear on write 0
VANA_OV_FLT	Description	VANA overvoltage notification
	0	No overvoltage detected
	1	Overvoltage has been detected on the VANA supply
	Reset condition	POR/clear on write 0
VANA_UV_FLT	Description	VANA undervoltage notification
	0	No undervoltage detected
	1	Undervoltage has been detected on the VANA supply
	Reset condition	POR/clear on write 0
ADC1_B_FLT	Description	ADC1_B fault notification
	0	No fault detected
	1	ADC1_B fault (over or undervoltage has been detected on MEAS_VBG_DIAG_ADC1B)
	Reset condition	POR/clear on write 0
ADC1_A_FLT	Description	ADC1_A fault notification
	0	No fault detected
	1	ADC1_A fault (over or undervoltage has been detected on MEAS_VBG_DIAG_ADC1A)
	Reset condition	POR/clear on write 0
GND_LOSS_FLT	Description	Loss of ground has been detected on DGND or AGND
	0	No error
	1	Loss of ground detected
	Reset condition	POR/clear on write 0
IC_TSD_FLT	Description	IC thermal limitation notification
	0	No thermal limitation detected

Table 59. FAULT2_STATUS...continued

	1	Thermal limitation detected
	Reset condition	POR/clear on write 0
IDLE_MODE_FLT	Description	IDLE mode notification
	0	No notification
	1	The system has transitioned through idle mode
	Reset condition	POR/clear on write 0
AN_OPEN_FLT	Description	Analog inputs open load detection
	0	No open load detected
	1	Open load detected in one of the seven analog inputs
	Reset condition	POR/clear on write 0 all GPIO_SHORT_ANx_OPEN_STS[ANx_OPEN] bits
GPIO_SHORT_FLT	Description	GPIO short detection
	0	No short detected
	1	Short detected in one or more of the seven GPIOs, pad sense is different from pad command
	Reset condition	POR/clear on write 0 all GPIO_SHORT_ANx_OPEN_STS(GPIOx_SH) bits
CB_SHORT_FLT	Description	Cell balance short-circuit detection
	0	No short-circuit detected
	1	On state short-circuit detected in one or more of the 14 cell balancing switches
	Reset condition	POR/clear on write 0 all CB_SHORT_FLT(CBx_SHORT) bits
CB_OPEN_FLT	Description	Cell balancing open load detection
	0	No cell balance open load detected
	1	Off state open load detected in one or more of the 14 cell balancing switches
	Reset condition	POR/clear on write 0 all CB_OPEN_FLT(CBx_OPEN) bits
OSC_ERR_FLT	Description	Low-power oscillator error
	0	No error
	1	The low-power oscillator frequency is out of range after a reset due to an oscillator monitoring fault
	Reset condition	POR/clear on write 0 (bit is not cleared if reset was caused by an oscillator monitoring fault)
DED_ERR_FLT	Description	ECC error, double error detection
	0	No error
	1	A double error has been detected (and only one corrected) in the fuses
	Reset condition	POR/clear on write 0
FUSE_ERR_FLT	Description	Error in the loading of fuses
	0	No error
	1	The lock bit was not set after loading, meaning transfer of the fuse values is aborted
	Reset condition	POR/clear on write 0

[1] w0c: write 0 to clear

11.26 Fault status register 3 – FAULT3_STATUS

Table 60. FAULT3_STATUS

FAULT3_STATUS																	
\$26	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write		w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	w0c ^[1]	
Read	CC_OVR_FLT	DIAG_TO_FLT	EOT_CB14	EOT_CB13	EOT_CB12	EOT_CB11	EOT_CB10	EOT_CB9	EOT_CB8	EOT_CB7	EOT_CB6	EOT_CB5	EOT_CB4	EOT_CB3	EOT_CB2	EOT_CB1	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CC_OVR_FLT	Description		Overflow indicator on the COULOMB_CNT1,2[COULOMB_CNT] or CC_NB_SAMPLES														
	0		No error														
	1		COULOMB_CNT1,2[COULOMB_CNT] or CC_NB_SAMPLES went in overflow														
	Reset condition		POR /Clear On Write 0 CC_P_OVF,CC_N_OVF, SAMP_OVF and CC_OVT														
DIAG_TO_FLT	Description		Timeout of diagnostic state														
	0		No timeout														
	1		The system has exited itself from diagnostic state after timeout														
	Reset condition		POR/clear on write 0														
EOT_CBx	Description		End of time cell balancing notification – indicates when a cell balance timer has expired and driver has been shutoff														
	0		Cell balance timer has not timed out														
	1		Cell balance timer has timed out														
	Reset condition		POR/clear on write 0														

[1] w0c: write 0 to clear

11.27 Fault mask register 1 – FAULT_MASK1

The FAULT_MASK1 register allows the user to selectively mask fault bits associated to the FAULT1_STATUS register. Masking a certain fault bit has the effect of preventing this bit from activating the FAULT output pin.

Table 61. FAULT_MASK1

FAULT_MASK1																	
\$27	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write				MASK_12_F	MASK_11_F	MASK_10_F	MASK_9_F	MASK_8_F	MASK_7_F	MASK_6_F	MASK_5_F	MASK_4_F	MASK_3_F	MASK_2_F	MASK_1_F	MASK_0_F	
Read	0	0	0														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
MASK_x_F	Description		Prevent the corresponding flags in FAULT1_STATUS to activate the FAULT pin														
	0		The flag in position (x) activates the FAULT pin														
	1		No activation														
	Reset condition		POR														

11.28 Fault mask register 2 – FAULT_MASK2

The FAULT_MASK2 register allows the user to selectively mask fault bits associated to the FAULT2_STATUS register. Masking a certain fault bit has the effect of preventing this bit from activating the FAULT output pin.

Table 62. FAULT_MASK2

FAULT_MASK2																	
\$28	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write	MASK_15_F	MASK_14_F	MASK_13_F	MASK_12_F	MASK_11_F	MASK_10_F	MASK_9_F			MASK_6_F	MASK_5_F	MASK_4_F	MASK_3_F	MASK_2_F	MASK_1_F	MASK_0_F	
Read	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
MASK_x_F	Description		Prevent the corresponding flags in FAULT2_STATUS to activate the FAULT pin														
	0		The flag in position (x) activates the FAULT pin														
	1		No activation														
	Reset condition		POR														

11.29 Fault mask register 3 – FAULT_MASK3

The FAULT_MASK3 register allows the user to selectively mask fault bits associated to the FAULT3_STATUS register. Masking a certain fault bit has the effect of preventing this bit from activating the FAULT output pin.

Table 63. FAULT_MASK3

FAULT_MASK3																	
\$29	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write	MASK_15_F	MASK_14_F	MASK_13_F	MASK_12_F	MASK_11_F	MASK_10_F	MASK_9_F	MASK_8_F	MASK_7_F	MASK_6_F	MASK_5_F	MASK_4_F	MASK_3_F	MASK_2_F	MASK_1_F	MASK_0_F	
Read	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
MASK_x_F	Description		Prevent the corresponding flags in FAULT3_STATUS to activate the FAULT pin														
	0		The flag in position (x) activates the FAULT pin														
	1		No activation														
	Reset condition		POR														

11.30 Wake-up mask register 1 – WAKEUP_MASK1

The WAKEUP_MASK1 register enables wake-up events related to several FAULT1_STATUS fault bits. If a certain bit contained in the latter register is not masked by the corresponding bit of the former register, the IC transitions from sleep mode to normal mode.

Table 64. WAKEUP_MASK1

WAKEUP_MASK1																	
\$2A	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write				MASK_12_F	MASK_11_F				MASK_7_F			MASK_4_F	MASK_3_F	MASK_2_F	MASK_1_F	MASK_0_F	
Read	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	
Reset	0	0	0	1	1	0	0	0	1	0	0	1	1	1	1	1	
MASK_x_F	Description		Prevent the corresponding flags in FAULT1_STATUS to wake-up the device														
	0		The flag in position (x) wakes the device up, when active														
	1		No wake-up is possible by this source														
	Reset condition		POR														

11.31 Wake-up mask register 2 – WAKEUP_MASK2

The WAKEUP_MASK2 register enables wake-up events related to several FAULT2_STATUS fault bits. If a certain bit contained in the latter register is not masked by the corresponding bit of the former register, the IC transitions from sleep mode to normal mode.

Table 65. WAKEUP_MASK2

WAKEUP_MASK2																	
\$2B	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write	MASK_15_F	MASK_14_F	MASK_13_F	MASK_12_F	MASK_11_F	MASK_10_F	MASK_9_F	MASK_8_F			MASK_5_F	MASK_4_F	0	MASK_2_F	MASK_1_F		
Read									0	0						0	
Reset	1	1	1	1	1	1	1	1	0	0	1	1	1	0	1	0	
MASK_x_F	Description		Prevent the corresponding flags in FAULT2_STATUS to wake-up the device														
	0		The flag in position (x) wakes the device, when active														
	1		No wake-up is possible by this source														
	Reset condition		POR														

11.32 Wake-up mask register 3 – WAKEUP_MASK3

The WAKEUP_MASK3 register enables wake-up events related to several FAULT3_STATUS fault bits. If a certain bit contained in the latter register is not masked by the corresponding bit of the former register, the IC transitions from sleep mode to normal mode.

Table 66. WAKEUP_MASK3

WAKEUP_MASK3																	
\$2C	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write	MASK_15_F		MASK_13_F	MASK_12_F	MASK_11_F	MASK_10_F	MASK_9_F	MASK_8_F	MASK_7_F	MASK_6_F	MASK_5_F	MASK_4_F	MASK_3_F	MASK_2_F	MASK_1_F	MASK_0_F	
Read		0															
Reset	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
MASK_x_F	Description		Prevent the corresponding flags in FAULT3_STATUS to wake-up the device														
	0		The flag in position (x) wakes the device, when active														
	1		No wake-up is possible by this source														
	Reset condition		POR														

11.33 Coulomb count number of samples register – CC_NB_SAMPLES

The CC_NB_SAMPLES register contains the 16-bit value, which represents the number of samples accumulated in the coulomb counter at the moment of copying its value to the COULOMB_CNT registers.

Table 67. CC_NB_SAMPLES

CC_NB_SAMPLES																	
\$2D	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write																	
Read									CC_NB_SAMPLES								
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CC_NB_SAMPLES	Description		Number of samples accumulated for the coulomb count value														
	Reset condition		POR / ADC_CFG[CC_RST]														

11.34 Coulomb count register – COULOMB_CNT

The COULOMB_CNT register contains the current 32-bit value of the accumulated current samples. Data representation is signed two's complement, with V_{2RES} resolution. Division of Δ COULOMB_CNT by Δ CC_NB_SAMPLES provides the average current, where the operator Δ denotes the variation over two different readings of a state. Subsequent multiplication by the corresponding elapsed time Δt provides the charge flowed out/in of the battery.

Table 68. COULOMB_CNT1

COULOMB_CNT1																	
\$2E	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write																	
Read	COULOMB_CNT_MS																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
COULOMB_CNT_MS	Description		Coulomb counting accumulator														
	Reset condition		POR/ADC_CFG[CC_RST]														

Table 69. COULOMB_CNT2

COULOMB_CNT2																	
\$2F	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write																	
Read	COULOMB_CNT_LSB																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
COULOMB_CNT_LSB	Description		Coulomb counting accumulator														
	Reset condition		POR / ADC_CFG[CC_RST]														

11.35 Current measurement registers – MEAS_ISENSE1 and MEAS_ISENSE2

The MEAS_ISENSE_x registers contain the signed two's complement value of the battery current measured on demand.

Table 70. MEAS_ISENSE1

MEAS_ISENSE1																	
\$30	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write																	
Read	DATA_RDY	MEAS_I_MS															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
DATA_RDY	Description		This bit is set when the conversion is complete and the register is updated. The DATA_RDY bit is cleared when a request to convert is received either through the SOC or GPIO2 convert trigger.														
	0		A new sequence of conversions is currently running														
	1		A data is available in MEAS_ISENSE1														
	Reset condition		POR														
MEAS_I_MS	Description		ISENSE value, compensated in gain and temp, signed														
	Reset condition		POR														

Table 71. MEAS_ISENSE2

MEAS_ISENSE2																
\$31	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write									w0c ^[1]	w0c ^[1]						
Read	DATA_RDY	0	0	0	0	0	0	0	ADC2_SAT	PGA_GCHANGE	0	0	0	0	0	0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Description		This bit is set when the conversion is complete and the register is updated. The DATA_RDY bit is cleared when a request to convert is received either through the SOC or GPIO2 convert trigger.													
DATA_RDY	0		A new sequence of conversions is currently running													
	1		Data is available in MEAS_ISENSE2													
	Reset condition		POR													
PGA_GAIN	Description		Report the current gain of the ADC2 programmable gain amplifier (automatically settled or not)													
	0 0		4													
	0 1		16													
	1 0		64													
	1 1		256													
	Reset condition		POR													
ADC2_SAT	Description		ADC2 saturation information													
	0		No saturation reported													
	1		ADC2 has saturated during the ISENSE on-demand conversion													
	Reset condition		POR/clear on write 0													
PGA_GCHANGE	Description		PGA gain change information during ISENSE on-demand conversion													
	0		No gain change during ISENSE on-demand measurement; result is accurate													
	1		The PGA gain has changed between the two chopped measurements													
	Reset condition		POR/clear on write 0													
MEAS_I_LSB	Description		ISENSE value, compensated in gain and temp, signed													
	Reset condition		POR													

[1] w0c: write 0 to clear

11.36 Measurement registers – MEAS_xxxx

The MEAS_xxxx registers contain the measured values as a result of on-demand conversions. Note that the cyclic conversions leave no trace in these registers, as they are only used to update the OV/UV/OT/UT flags and other status information.

Table 72. MEAS_xxxx

MEAS_xxxx																
\$32 to \$4A	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write																
Read	DATA_RDY															MEAS_xxxx
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Description		This bit is set when the conversion is complete and the register is updated. The Data_Rdy bit is cleared when a request to convert is received either through the SOC or GPIO2 convert trigger.													
DATA_RDY	0		A new sequence of conversions is currently running													
	1		A data is available in MEAS_xxxx													
	Reset condition		POR													

Table 72. MEAS_XXXX...continued

MEAS_XXXX	Description	Value is unsigned, resolution is $V_{CT_ANx_RES}$ independently on the selected resolution of ADC_CFG
	Reset condition	POR

11.37 Overvoltage undervoltage threshold register – TH_ALL_CT

Resolution for OV threshold and UV threshold are, respectively, $V_{CTOV(TH)}$ and $V_{CTUV(TH)}$.

Table 73. TH_ALL_CT

TH_ALL_CT																	
\$4B	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write	ALL_CT_OV_TH										ALL_CT_UV_TH						
	Read																
Reset	1	1	0	1	0	1	1	1	1	0	0	0	0	0	0	0	
ALL_CT_OV_TH	Description		Overvoltage threshold setting for all cell terminals. Enabled through register OV_UV_EN														
	11010111		Default overvoltage threshold set to 4.2 V														
	Reset condition		POR														
ALL_CT_UV_TH	Description		Undervoltage threshold setting for all cell terminals. Enabled through register OV_UV_EN														
	10000000		Default undervoltage threshold set to 2.5 V														
	Reset condition		POR														

11.38 Overvoltage undervoltage threshold register – TH_CTx

Table 74. TH_CTx

TH_CTx																	
\$4C to \$59	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write	CTx_OV_TH										CTx_UV_TH						
	Read																
Reset	1	1	0	1	0	1	1	1	1	0	0	0	0	0	0	0	
CTx_OV_TH	Description		Overvoltage threshold setting for individual cell terminals. OV_UV_EN[COMMON_OV_TH] bit must be logic 0 and OV_UV_EN[CTx_OVUV_EN] bit must be logic 1 to use TH_CTx register as threshold.														
	11010111		Default overvoltage threshold set to 4.2 V														
	Reset condition		POR														
CTx_UV_TH	Description		Undervoltage threshold setting for individual cell terminals. OV_UV_EN[COMMON_UV_TH] bit must be logic 0 and OV_UV_EN[CTx_OVUV_EN] bit must be logic 1 to use TH_CTx register as threshold.														
	10000000		Default undervoltage threshold set to 2.5 V														
	Reset condition		POR														

11.39 Overtemperature, undertemperature threshold registers – TH_Anx_OT, TH_Anx_UT

Registers TH_Anx_OT and TH_Anx_UT contain the individually programmed overtemperature and undertemperature value for each analog input.

Table 75. TH_ANX_OT

TH_Anx_OT																	
\$5A to \$60	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write																	
Read	0	0	0	0	0	0	ANx_OT_TH										
Reset	0	0	0	0	0	0	0	0	1	1	1	0	1	1	0	1	
Anx_OT_TH	Description		Overtemperature threshold setting for analog input x														
	0011101101		Overtemperature default set to 1.16 V														
	Reset condition		POR														

Table 76. TH_ANX_UT

TH_Anx_UT																	
\$61 to \$67	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write																	
Read	0	0	0	0	0	0	ANx_UT_TH										
Reset	0	0	0	0	0	0	1	1	0	0	0	0	1	1	1	0	
Anx_UT_TH	Description		Undertemperature threshold setting for analog input x														
	1100001110		Undertemperature default set to 3.82 V														
	Reset condition		POR														

11.40 Overcurrent threshold register – TH_ISENSE_OC

Registers TH_ISENSE_OC contains the programmed overcurrent threshold in sleep mode.

Table 77. TH_ISENSE_OC

TH_ISENSE_OC																	
\$68	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Write																	
Read	0	0	0	0	TH_ISENSE_OC												
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TH_ISENSE_OC	Description		Sleep mode ISENSE overcurrent threshold, unsigned. Resolution is 1.2 μ V/LSB.														
	Reset condition		POR														

11.41 Over coulomb counter threshold registers – TH_COULOMB_CNT

The coulomb counter threshold in sleep mode is given by the following two registers.

Table 78. TH_COULOMB_CNT_MSB

TH_COULOMB_CNT_MSB																
\$69																
Write																
Read																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TH_COULOMB_CNT_MSB	Description		Over coulomb counting accumulator threshold (MSB)													
	Reset condition		POR													

Table 79. TH_COULOMB_CNT_LSB

TH_COULOMB_CNT_LSB																
\$6A																
Write																
Read																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TH_COULOMB_CNT_LSB	Description		Over coulomb counting accumulator threshold (LSB). Resolution is V_{2RES} .													
	Reset condition		POR													

11.42 Silicon revision register – SILICON_REV

Table 80. SILICON_REV

SILICON_REV																
\$6B																
Write																
Read																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	F	F	F
FREV	Description		Full mask revision													
	001		Pass 1.x													
	010		Pass 2.x													
	...															
	Reset condition		POR													
MREV	Description		Metal mask revision													
	000		Pass y.0													
	001		Pass y.1													
	...															
	Reset condition		POR													

11.43 EEPROM communication register EEPROM_CTRL

Table 81. EEPROM_CTRL

EEPROM_CTRL																
\$6C	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	R/W	EEPROM_ADD										DATA_TO_WRITE				
Read	BUSY	ERROR	EE_PRESENT	0	0	0	0	0	READ_DATA							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	Description			Read/write bit, directs the 33771 to read or write from EEPROM												
	0			Write												
	1			Read												
	Reset condition			POR												
EEPROM_ADD	Description			EEPROM address to read or write												
	Reset condition			POR												
DATA_TO_WRITE	Description			Data to be written into the EEPROM												
	Reset condition			POR												
BUSY	Description			Busy bit												
	0			Indicates the IC has completed the EEPROM read or write operation												
	1			Indicates the IC is in the process of performing the EEPROM read or write operation.												
	Reset condition			POR												
ERROR	Description			EEPROM communication error bit.												
	0			No error occurred during the communication to EEPROM												
	1			An error occurred during the communication to EEPROM												
	Reset condition			POR												
EE_PRESENT	Description			EEPROM detection												
	0			No EEPROM detected												
	1			EEPROM has been detected and present												
READ_DATA	Reset condition			POR												
	Description			Data read in the EEPROM at address given by EEPROM_ADD												
	Reset condition			POR												

11.44 ECC signature 1 register

Table 82. DED_ENCODE1

DED_ENCODE1																
\$6D	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write																
Read	DED_HAMMING_COUT1_31_16															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DED_HAMMING_COUT1_31_16	Description			Reports the 16 MSBits to encode in the fuse matrix (ECC)												
	Reset condition			POR												

11.45 ECC signature 2 register

Table 83. DED_ENCODE2

DED_ENCODE2																
\$6E	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write																
Read	DED_HAMMING_COUT_1_15_0															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DED_HAMMING_COUT_1_15_0	Description		Report the 16 LSBits to encode in the fuse matrix (ECC)													
	Reset condition		POR													

11.46 FUSE mirror and data control

Table 84. FUSE_MIRROR_DATA

FUSE_MIRROR_DATA																
\$6F	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write																
Read	FMR_DATA															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FMR_DATA	Description		Fuse mirror data to read or write													
	Reset condition		POR													

Table 85. FUSE_MIRROR_CNTL

FUSE_MIRROR_CNTL																
\$70	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	w0c ^[1]															
Read	SEC_ERR_FLT	0	0	FMR_ADDR						0	0	0	0	0	FST_ST	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SEC_ERR_FLT	Description		ECC error, single error correction													
	0		No error													
	1		A single error has been detected and corrected. The IC is usable, must not be considered defective.													
	Reset condition		POR/clear on write 0													
FMR_ADDR	Description		Fuse mirror register address													
	Reset condition		POR													
FSTM	Description		Fuse state write mask. This bit controls the write access to the FST[2:0] bits.													
	0		Writing in FST bits has no effect													
	1		FST bits are unlocked for writing													
	Reset condition		POR													

Table 85. FUSE_MIRROR_CNTL...continued

FST	Description	Fuse state control. write to this register controls the switching of the fuse state machine. Read in this register enables tracing the current state.
	0 0 0	Refer to Section 9.13 for bit description.
	Reset condition	POR
FST_ST	Description	Fuse state control. Read in this register enables to trace the current state
	0 0 0	Refer to Section 9.13 for bit description.
	Reset condition	POR

[1] w0c: write 0 to clear

11.47 Reserved

Table 86. RESERVED

Reserved																
\$71 to \$FF	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Write	Do not change															
Read																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

11.48 Fuse bank

Table 87. FUSE_BANK

Bank address	Data																
	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
\$00	GCF_cold_c13										GCF_room_c13						
\$01	GCF_cold_c11										GCF_room_c11						
\$02	GCF_cold_c9										GCF_room_c9						
\$03	GCF_cold_c7										GCF_room_c7						
\$04	GCF_cold_c5										GCF_room_c5						
\$05	GCF_cold_c3										GCF_room_c3						
\$06	cold_c2vs1										GCF_room_c1						
\$07	GCF_hot_c13						GCF_hot_i256					GCF_cold_i256					
\$08	GCF_hot_c11						GCF_hot_i64					GCF_cold_i64					
\$09	GCF_hot_c9						GCF_hot_i16					GCF_cold_i16					
\$0A	GCF_hot_c7						GCF_hot_i4					GCF_cold_i4					
\$0B	GCF_hot_c5						GCF_ANx_ratio					room_c14vs13		hot_c14vs13			
\$0C	GCF_hot_c3						hot_c2vs1					room_c12vs11		hot_c12vs11			
\$0D	Single Side	c2_offset	cold_c14vs13	cold_c12vs11	cold_c10vs9	cold_c6vs5	room_c10vs9	room_c10vs9	room_c10vs9	room_c10vs9	room_c10vs9	room_c10vs9	room_c10vs9	room_c10vs9	room_c10vs9	room_c10vs9	

Table 87. FUSE_BANK...continued

Bank address	Data																										
	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0											
\$0E	GCF_hot_c1								cold_c8vs7	cold_c4vs3	room_c8vs7	hot_c8vs7															
\$0F	GCF_stack								room_c2vs1				room_c6vs5	hot_c6vs5													
\$10	GCF_cold_c1								GCF_lcTemp				room_c4vs3	hot_c4vs3													
\$11	cold_Vbfp2vs1								GCF_i256																		
\$12	cold_Vbfp1vs1								GCF_i64																		
\$13	hot_Vbfp2vs1								GCF_i16																		
\$14	hot_Vbfp1vs1								GCF_i4																		
\$15	room_Vbfp2vs1								room_Vbfp1vs1																		
\$16	DED_ENCODE 2																										
\$17	DED_ENCODE 1																										
\$18	Traceability																										
\$19	Traceability																										
\$1A	Reserved												Traceability														

12 Safety

12.1 Safety features

MC33771C was developed as a Safety Element out of Context (SEooC). All the assumptions of use taken into account are described in the Safety manual.

MC33771C has been developed to be ASILC Qualified. Nevertheless, the MC33771C can be employed within systems performing ASIL D functions, since the MC33771C can achieve the corresponding ISO 26262 architectural metrics. This holds true only if the system integrator uses all safety mechanisms recommended in the safety manual, under the stated conditions of use and the fulfillment of the assumed general and specific requirements stated therein.

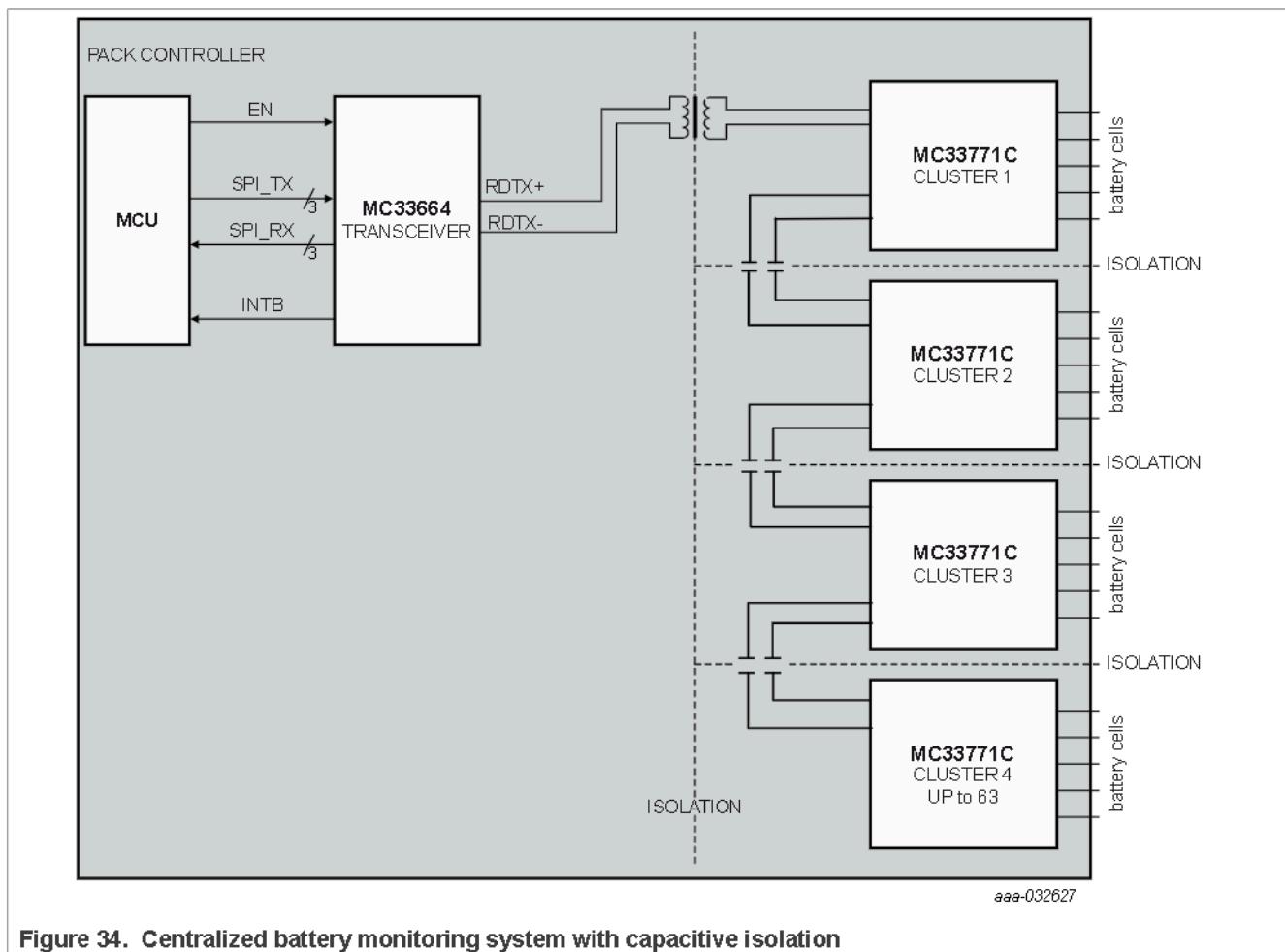
Diagnostics and safety features of the device are not described in the present document. To know about them, the user is referred to the MC33771C Safety Manual, whose information content is essential for any safety related application.

13 Typical applications

13.1 Introduction

NXP Semiconductors has developed a battery cell controller IC supporting both centralized and distributed battery management architectures. Centralized battery monitoring systems contain a controller module sensing individual differential cell voltages through a wiring harness. Distributed systems locate monitoring devices close to the lithium-ion batteries and use a communication interface to transfer data to the main controller MCU.

There are significant advantages to using transformers for isolation and communication. The most obvious benefit of the pulse transformers is the high degree of voltage isolation. Transformers specified in this document


are automotive qualified and rated at 3750 Vrms. Using pulse transformers allow the NXP battery management system to achieve communication rates of 2.0 Mbps with very low radiated emissions.

An added benefit to the transformer daisy chain network is the ability to loop the network back to the pack controller. This feature allows the user to verify communication to each node in the daisy chain.

13.1.1 Centralized battery management system

A centralized system is comprised of a single transformer driver with a transformer or capacitive isolation between each battery cell controller IC.

The centralized battery monitoring system using capacitive isolation is shown in [Figure 34](#).

Figure 34. Centralized battery monitoring system with capacitive isolation

The centralized battery monitoring system using transformer isolation is shown in [Figure 35](#)

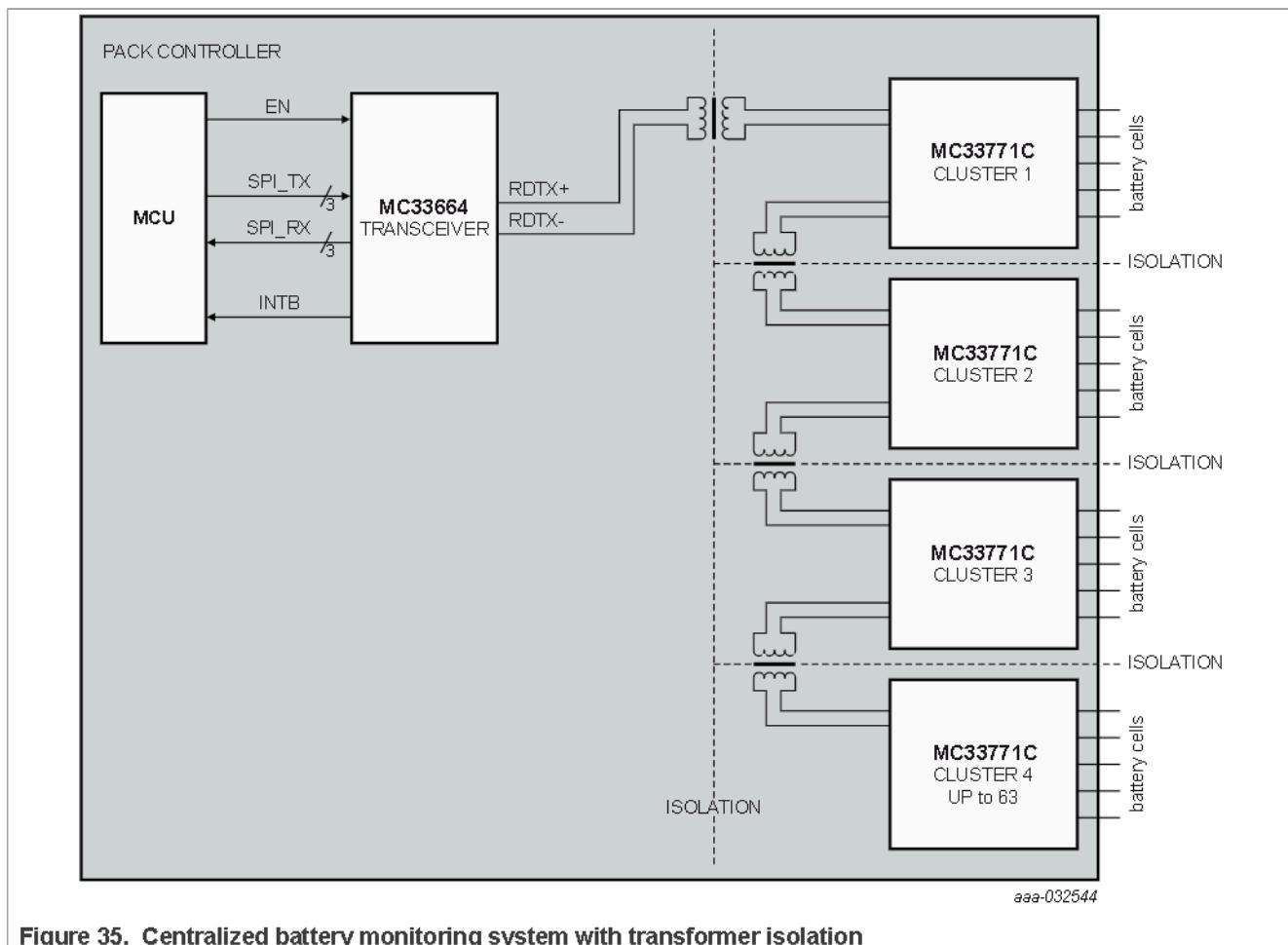


Figure 35. Centralized battery monitoring system with transformer isolation

13.1.2 Distributed battery management system

The distributed battery management solution is identical to the centralized system with an additional transformer and daisy chain cable in the pack controller and between each node.

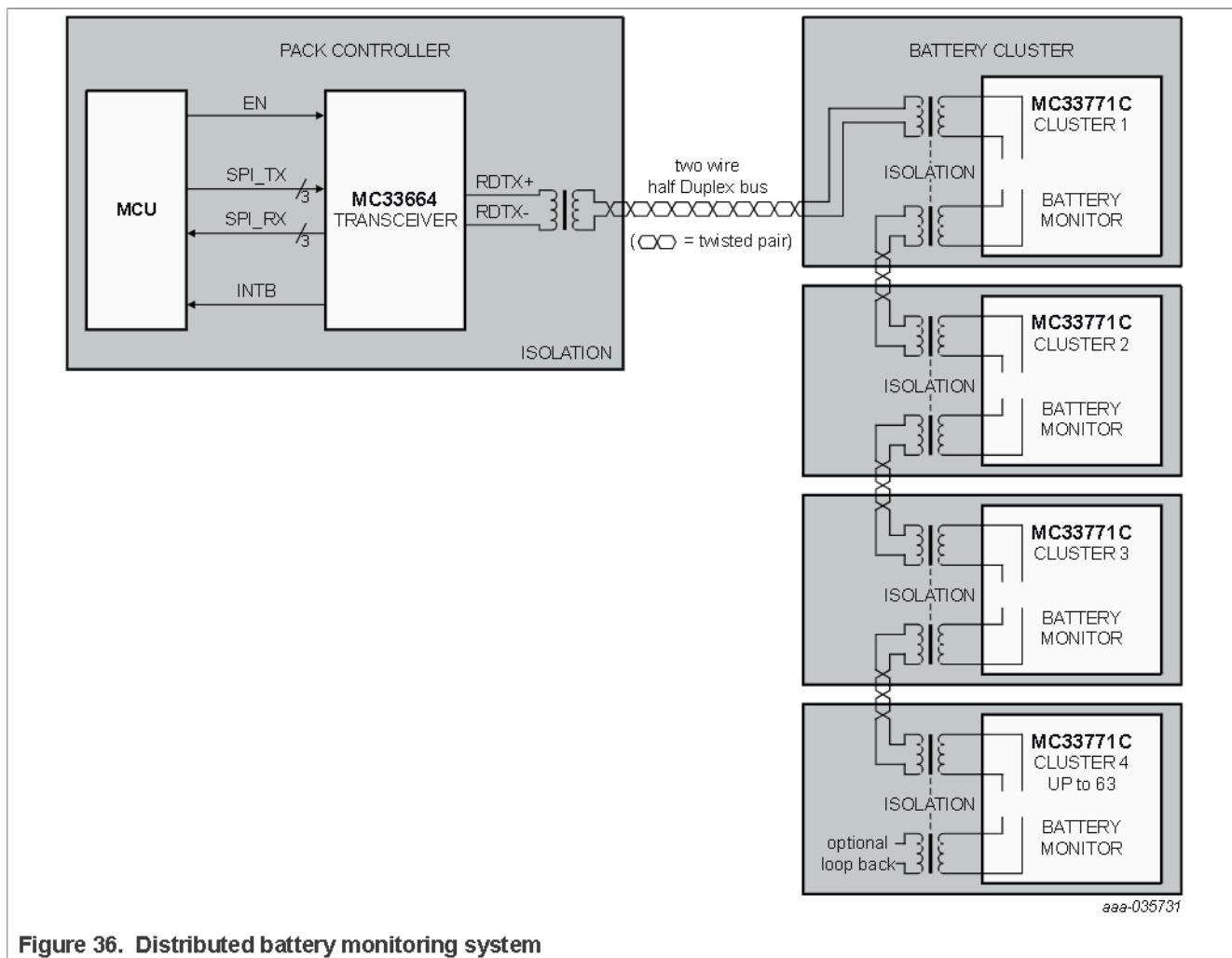


Figure 36. Distributed battery monitoring system

13.1.3 Multiple daisy chain

In a distributed system, the MC33771C ICs can be connected in multiple daisy chains. The number of daisy chains supported by the MC33771C IC is configurable with the MSB of the INIT[CID] register. Using one bit MSB of CID supports two daisy chains with up to 31 slave devices in each daisy chain. Similarly, using two bit MSB of CID supports 4 daisy chains with up to 15 slave devices in each daisy chain.

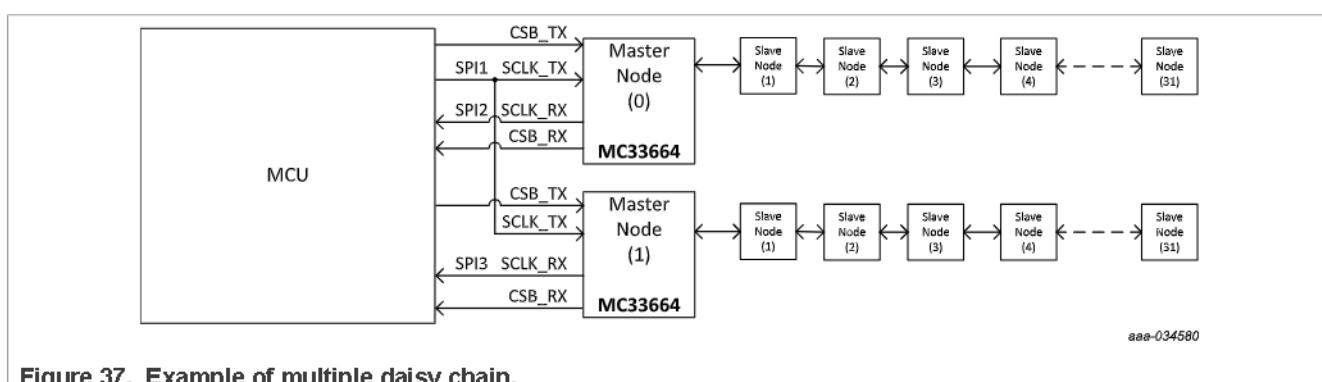
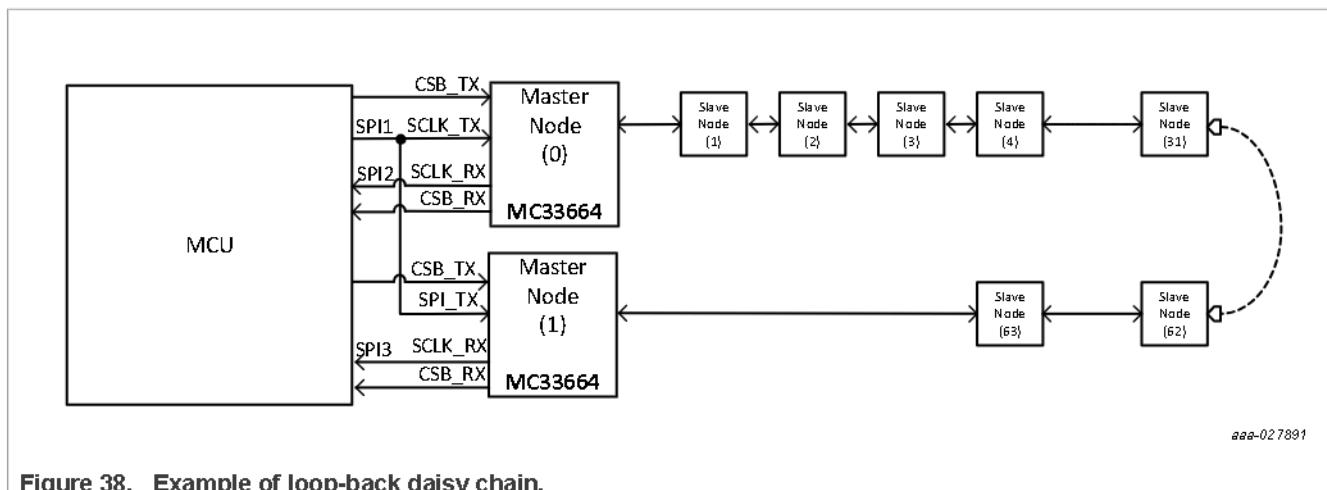



Figure 37. Example of multiple daisy chain.

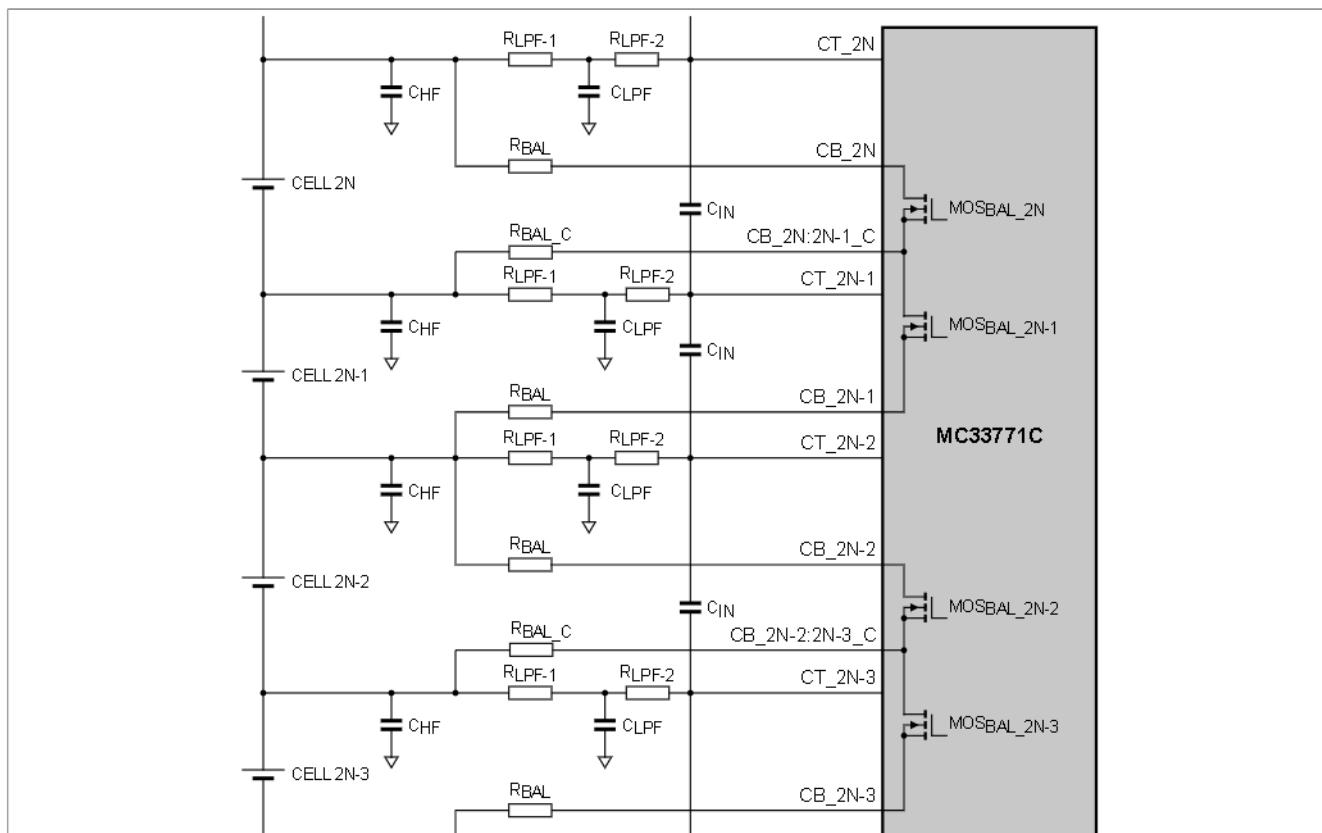
13.1.4 Loop-Back Daisy chain

In a distributed system, the MC33771C IC can also support a loop-back daisy chain with two master nodes connected at two SPI ports of the MCU. The slave devices are connected at each end of the master nodes as shown in the figure.

aaa-027891

Figure 38. Example of loop-back daisy chain.

Note: In the case of a loop-back daisy chain configuration, the MCU shall use only one master node at a time for communicating with the MC33771C IC.


Note: If multiple daisy chains are used in case of loop-back daisy chain communication, then two master nodes forming one complete loop are to be assigned with one daisy chain address.

13.2 MC33771C External Components

This section provides information about recommended external components and how to select them.

13.2.1 Cell terminal filters

[Figure 39](#) and [Figure 44](#) show the recommended second order low-pass filters for cell voltages.

Figure 39. Second order cell terminal filters and cell balancing resistors (internal cell balancing MOSFETs are shown for clarity)

Table 88. CT filter components

ID	Value	Units	Comments
C_{HF}	0.047	μF	Value used and tested at NXP Semiconductors to withstand ESD gun and hot plug
R_{LPF-1}	3	$k\Omega$	Value used and tested to withstand hot plug at NXP. Low-pass filter resistor R_{LPF-1} together with C_{LPF} determine the filter cut-off frequency. This value must not be changed. Component tolerance depends on the wanted accuracy for the bandwidth. See Equation (1) and Equation (2) .
C_{LPF}	0.1	μF	This capacitance value together with R_{LPF-1} provides 530 Hz cut-off frequency. Value used and tested to withstand hot plug at NXP. Component tolerance depends on the wanted accuracy for the bandwidth. See Equation (1) and Equation (2) .
R_{LPF-2}	2	$k\Omega$	Value used and tested to withstand hot plug at NXP. This value must not be changed. No special requirement for the tolerance of this component.
C_{IN}	0.01	μF	Value used and tested to withstand hot plug at NXP. This value must not be changed. No special requirement for the tolerance of this component.
R_{BAL}	X	Ω	Any value is possible, as long as the cell balance current does not exceed 300 mA
R_{BAL_C}	$R_{BAL}/5$	Ω	Maximum value

Using the arrangement shown in [Figure 39](#), the filter cut-off frequency in Hz, depending on the measurement time constant τ , is given by the following formula.

$$f_{cut} = 1 / (2\pi\tau) \quad (1)$$

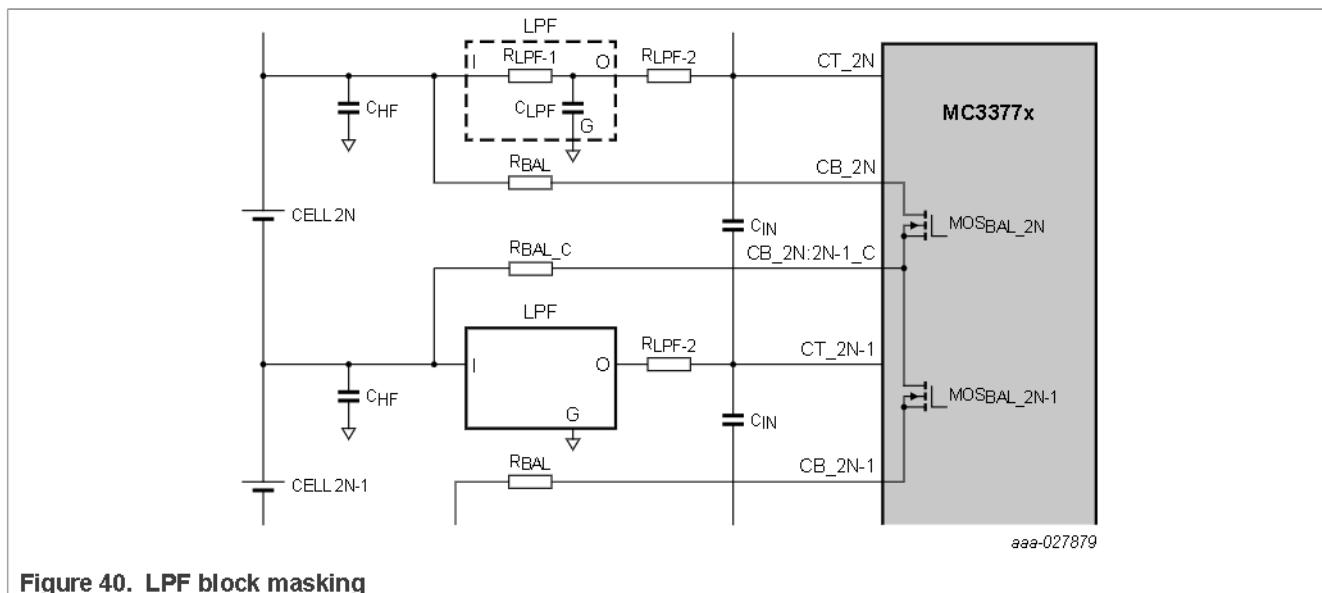
$$\tau = R_{LPF-1} C_{LPF} \quad (2)$$

For noisy applications if the customer cannot guarantee to keep CTREF voltage within the limits described in [Table 8](#) footnote 6, a setup of dual anti-parallel Schottky diodes can be added between CTREF battery connector pin and module ground to limit the voltage drop amplitude in transient. These diodes should be placed close to the corresponding R_{LPF-1} resistor (CT_REF pin low pass filter).

13.2.2 Unused cells

If the cluster has less than the maximum number of cells, the usage of cell terminal pins CT_x and cell balancing pins CB_x has to satisfy some constraints. Each external LPF block is masked, as shown in [Figure 40](#), to simplify the diagrams. As a convention, cell numbering is exactly the same as the associated CT_x. For example, cell 12 is the one whose positive terminal is connected to CT12, even though it is the 5th cell in a seven cell system, see [Figure 41](#). A minimum of seven cells must be used. At least cell 1 through cell 4 and cell 12 through cell 14 must be used. Unused cells must start with CT5. Stacked cells arrangements from 7 to 14 cells are described in [Table 89](#).

Table 89. Stacked cells arrangements


Cell	stacked cells								
	14	13	12	11	10	9	8	7	
1	CT_REF/CT1	CT_REF/CT1	CT_REF/CT1	CT_REF/CT1	CT_REF/CT1	CT_REF/CT1	CT_REF/CT1	CT_REF/CT1	CT_REF/CT1
2	CT1/CT2	CT1/CT2	CT1/CT2	CT1/CT2	CT1/CT2	CT1/CT2	CT1/CT2	CT1/CT2	CT1/CT2
3	CT2/CT3	CT2/CT3	CT2/CT3	CT2/CT3	CT2/CT3	CT2/CT3	CT2/CT3	CT2/CT3	CT2/CT3
4	CT3/CT4	CT3/CT4	CT3/CT4	CT3/CT4	CT3/CT4	CT3/CT4	CT3/CT4	CT3/CT4	CT3/CT4
5	CT4/CT5	CT5/CT6	CT6/CT7	CT7/CT8	CT8/CT9	CT9/CT10	CT10/CT11	CT11/CT12	CT12/CT13
6	CT5/CT6	CT6/CT7	CT7/CT8	CT8/CT9	CT9/CT10	CT10/CT11	CT11/CT12	CT12/CT13	CT13/CT14
7	CT6/CT7	CT7/CT8	CT8/CT9	CT9/CT10	CT10/CT11	CT11/CT12	CT12/CT13	CT13/CT14	
8	CT7/CT8	CT8/CT9	CT9/CT10	CT10/CT11	CT11/CT12	CT12/CT13	CT13/CT14		
9	CT8/CT9	CT9/CT10	CT10/CT11	CT11/CT12	CT12/CT13	CT13/CT14			
10	CT9/CT10	CT10/CT11	CT11/CT12	CT12/CT13	CT13/CT14				
11	CT10/CT11	CT11/CT12	CT12/CT13	CT13/CT14					
12	CT11/CT12	CT12/CT13	CT13/CT14						
13	CT12/CT13	CT13/CT14							
14	CT13/CT14								

Notes:

- CT5 is always populated with the full low-pass filter.
- Other not used pins are shorted directly to CT5.

As a general rule, unused CT_x have to be terminated to the positive terminal of cell 4 (this is also valid for the 7 to 8 channels version). As shown, several external components may be removed. Cell balancing resistors (R_{BAL}) of unused cells are to be mounted and terminated at the positive terminal of cell 4. Resistors for hot plug protection R_{LPF-2} must also be mounted.

A different number of missing cells leads to an application diagram analogous to [Figure 41](#). In general, if the cluster has N missing cells, it is possible to save N-2 times C_{HF}, N-2 times R_{LPF-1}, N-2 times C_{LPF} and N times C_{IN} mentioned in [Table 88](#).

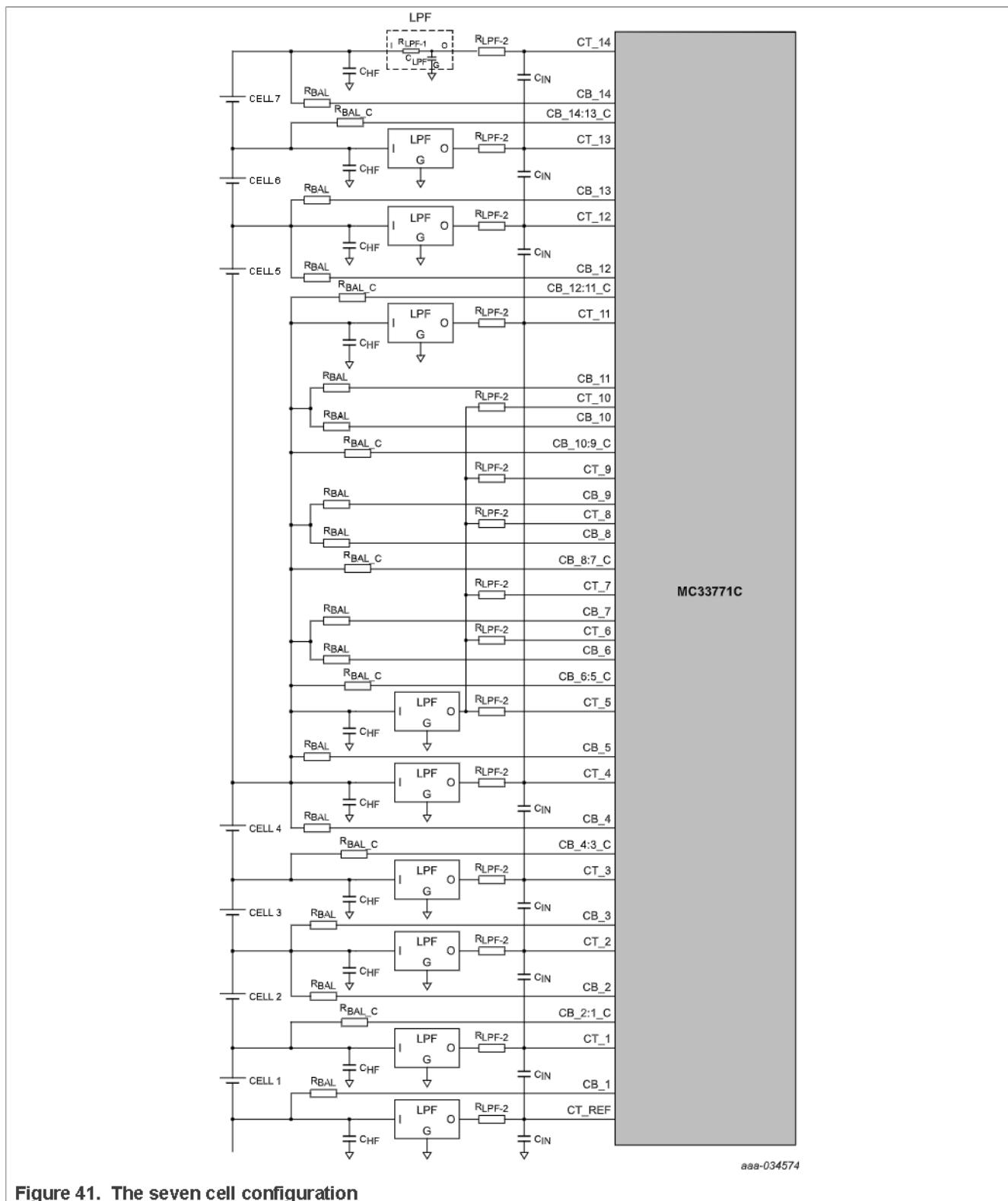


Figure 41. The seven cell configuration

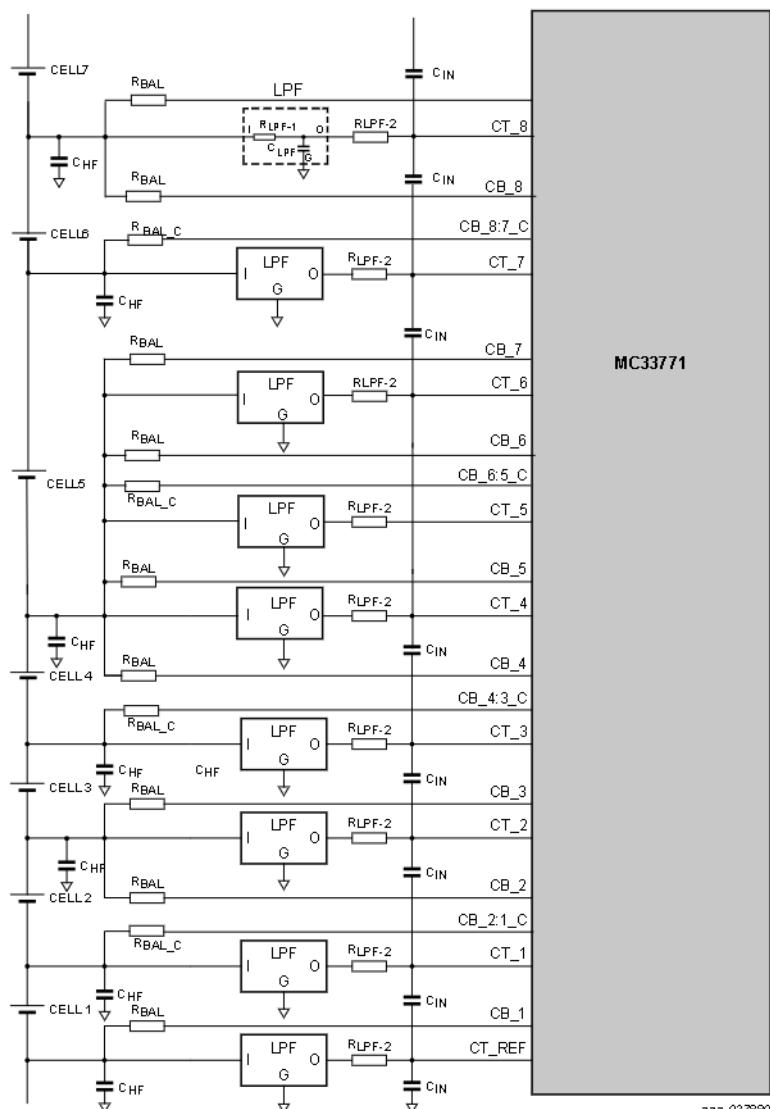


Figure 42. The twelve cell configuration

13.2.3 Hot plug protection

The VPWR line, shown in [Figure 43](#), must be protected by a serial resistor in order to limit the inrush current and a parallel capacitor to filter fast voltage variation. A higher value of R_{VPWR} provides better protection. The drawback of higher R_{VPWR} is higher voltage drop. The minimum battery voltage (V_{BAT}) supplying the device through the R_{VPWR} resistor is then equal to [Equation \(12\)](#). As the stack voltage is measured across VPWR1, 2 pins and ground, stack measurement is affected by such voltage drop. Furthermore, voltage drops higher than V_{VPWR_CT} have a negative impact on cell measurement accuracy.

$$\min(V_{BAT}) = \max(V_{PWR(UV_POR)} + R_{VPWR} * [\max(I_{VPWR(TPL_TX)}) + \max(I_{LIM_VCOM(OC)}) + \max(I_{LIM_VANA(OC)})]) \quad (12)$$

In order to withstand hot plug, it is mandatory to use Zener diodes as shown in [Figure 43](#) close to the VPWR line. In general, all components, whose values are given in [Table 90](#), are mandatory to protect the IC when a connection is made to the battery pack. Changing the value of any external components listed in [Table 90](#) may result in serious IC damage during the connection to the battery pack. Capability of the device to sustain random connection to live voltage for pins VPWRx, CT_x, CB_x, CTREF, GND, ISENSE+ and ISENSE- has been extensively evaluated. Nevertheless, the total number of random combinations related to those pins cannot be entirely tested. Therefore, despite all engineering efforts performed by NXP, it is the responsibility of the system provider to ensure safe connection to the battery pack.

Furthermore, it is the responsibility of the system provider to manage the risk of short circuits on any external components connected to the IC, including external low-pass filters. A short-circuit on the pins connected to the battery can lead to high current flowing through the IC, causing a thermal event on the PCB. The system provider must employ common practices, such as fuse protection on the VPWR line, series of capacitors on the CT pins, appropriate power rating for external resistors, or any other appropriate measure capable to mitigate hazards.

Zener diodes D1 to D4 are required to protect internal ESD structures between VPWR and CB_x pins, when VPWR is connected before cells. The energy to charge the C_{HF} capacitors on CB_x pins exceeds the capability of the internal ESD devices for VPWR max operating range. Zener diodes D1 to D4 are placed on CB_14, CB_12, CB_10:9_C and CB_8:7_C pins according to the internal ESD protection network. The joint presence of these Zener diodes and the set of internal cell balancing transistors, which are highly robust due to their large size, guarantee hot plug protection of the following pins: CB_14:13_C, CB_13, CB_12:11_C, CB_11, CB_10, CB_9, CB_8, and CB_7. All other CB_x pins do not need external Zener diodes, because the internal ESD clamping voltage is higher than the VPWR max operating value. Clamping voltages of Zener diodes D1 to D4 are defined to be higher than the maximum rating between VPWR and CB_x, and lower than the clamping voltage of the internal ESD devices between these pins.

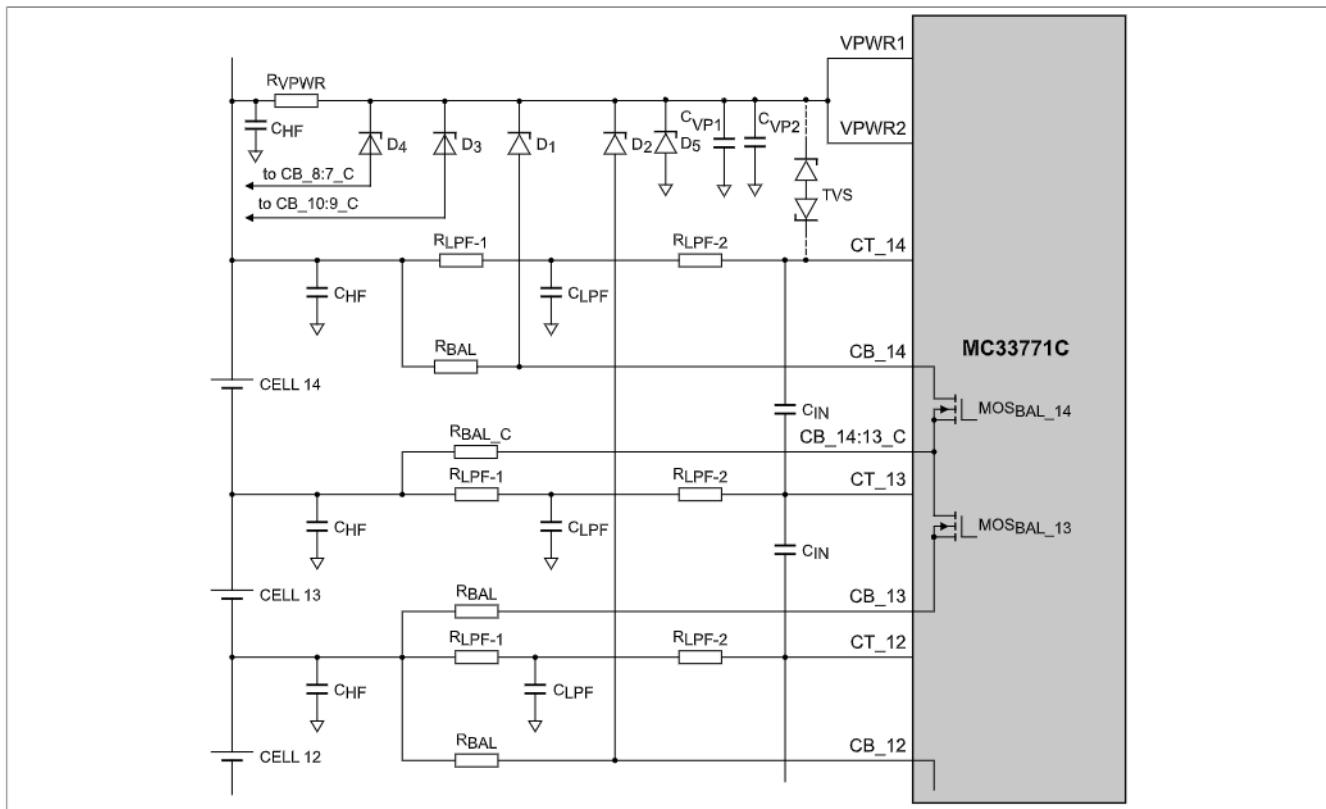


Figure 43. Top cell terminal filters and balancing resistors, VPWR1, 2 components to withstand hot plug

Table 90. Components to avoid hot plug issues

ID	Value	Units	Comments
D ₅	75	V	To protect the IC against transient overvoltage, use the specified Zener voltage. For example, use MMSZ5267BT1G (75V) or BZX384-B75
D ₄	43	V	D ₄ is rated 43 V because max operating voltage between VPWR and CB_8:7_C is 35 V and typical internal ESD clamping voltage between VPWR and CB_8:7_C is 60 V. For example, use MMSZ5260BT1G (43v) or BZX384-B43.
D ₃	27	V	D ₃ is rated in the range 26.5 V to 29.5 V, because max operating voltage between VPWR and CB_10:9_C is 25 V and typical internal ESD clamping voltage between VPWR and CB_10:9 is 50 V. The diode voltage rating is limited because the typical internal ESD clamping voltage between VPWR and CT9 is 33v. For example, use MMSZ5255BT1G (28v) or BZX384-B27.
D ₂	20	V	D ₂ is rated 20 V, because max operating voltage between VPWR and CB_12 is 10 V and typical internal ESD clamping voltage between VPWR and CB_12 is 50 V. For example, use MMSZ5250BT1G (20v) or BZX384-B20.
D ₁	2 x 8.2	V	D ₁ is rated 16.4 V, because max operating voltage between VPWR and CB_14 is 10 V and typical internal ESD clamping voltage between VPWR and CB_14 is 50 V. Implementation may be done by using two diodes in series, each of which having half Zener voltage. For example, use two MMSZ5237BT1G (8.2v) or two BZX384-B8V2.
R _{VPWR}	10	Ω	Reducing resistance value may jeopardize hot plug capability. Power rating is 0.1 W.
C _{VP1}	220	nF	To withstand hot plug, this value must not be changed
C _{VP2}	1	nF	Ceramic capacitor

Table 90. Components to avoid hot plug issues...continued

ID	Value	Units	Comments
TVS (optional)	8	V	If $V_{PWR} > 55$ V during hot plug then a TVS (PESD5V0V1BB or equivalent) should be added between CT14 and VPWR. The indicated voltage is the nominal breakdown voltage.

13.2.4 Current channel filter

The current channel may be filtered as shown in [Figure 44](#). Example component values are given in [Table 91](#).

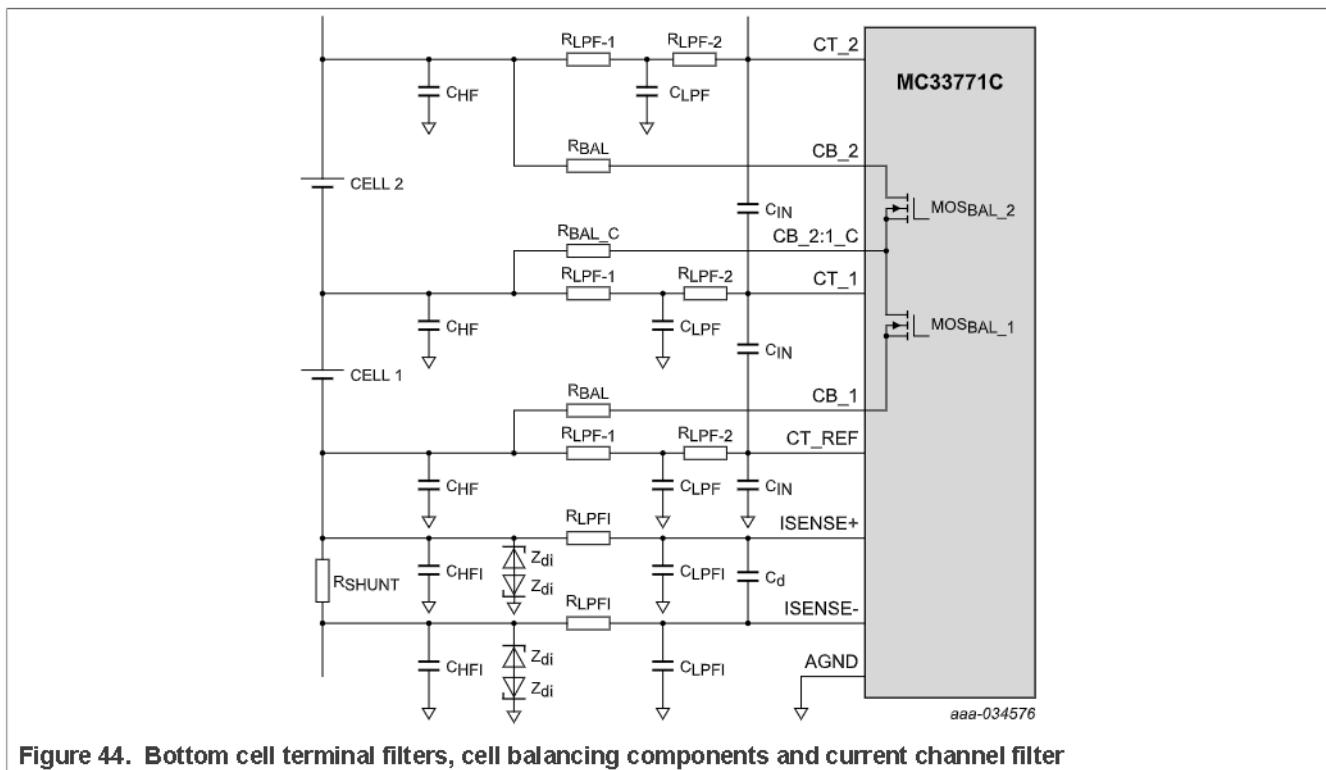


Figure 44. Bottom cell terminal filters, cell balancing components and current channel filter

Table 91. ISENSE filter components

ID	Value	Units	Comments
C_{HFI}	47	nF	This component serves to withstand ESD gun and its value must not be changed
R_{LPFI}	127	Ω	Warning: do not exceed 200Ω . Use 5 % tolerance. Used value is to get both $f_{CUTI} = 91.8$ Hz and $f_{CM} = 26.67$ kHz. See Equation (13) , Equation (14) , Equation (16) , and Equation (17) .
C_d	6.8	μF	This example value has been chosen to get $f_{CUTI} = 91.8$ Hz and $t_{DIAG} \leq 31.7$ ms. See Equation (13) , Equation (14) , and Equation (15) . Use 5 % tolerance.
C_{LPFI}	47	nF	Value is chosen in order to get: 91.8 Hz, $t_{DIAG} \leq 31.7$ ms and $f_{CM} = 26.67$ kHz. See Equation (13) , Equation (14) , Equation (15) , Equation (16) and Equation (17) . Use 5 % tolerance.
ZDI	2.0	V	To protect during hot plug in case one of the ISENSE \pm pin is connected before GND of the device. Recommended MMSZ4679T1G.

The signal cutoff frequency (in Hz) arrangement shown in [Figure 44](#) of the current channel external filter depends on the measurement time constant τ_I given by [Equation \(14\)](#).

$$f_{cutI} = 1 / (2\pi\tau_I) \quad (13)$$

$$\tau_I = R_{LPFI} (C_{LPFI} + 2C_d) \quad (14)$$

The diagnostic time to detect an open from the shunt to the current filter arrangement shown in [Figure 44](#), is given by:

$$t_{diag} = (C_{LPFI} + C_d) \frac{V_{ISENSE-OL} + |R_{shunt}I_{max}|}{I_{ISENSE-OL}} \quad (15)$$

The current channel external filter arrangement shown in [Figure 44](#) of the common mode cutoff frequency in Hz, depends on the measurement time constant τ_{Icm} , given by the following formula, whose numeric result should be selected one detected above the signal cutoff frequency.

$$f_{Icm} = 1 / (2\pi\tau_{Icm}) \quad (16)$$

$$\tau_{Icm} = R_{LPFI} C_{LPFI} \quad (17)$$

Above equations must be taken into account when considering the procedure described in [Current measurement diagnostics](#) to detect an open connection between $ISENSE\pm$ and the input filter. Values for V_{ISENSE_OL} and I_{ISENSE_OL} are given in [Table 8](#), values for the shunt resistance R_{SHUNT} and the maximum current I_{MAX} through it are application specific, while example values for the filter capacitors and resistors can be found in [Table 91](#).

13.2.5 Temperature channels

[Figure 45](#) shows usage of $GPIO_x$ as analog inputs (AN_x) for temperature measurements. If not used, each $GPIO_x$ may be shorted to GND.

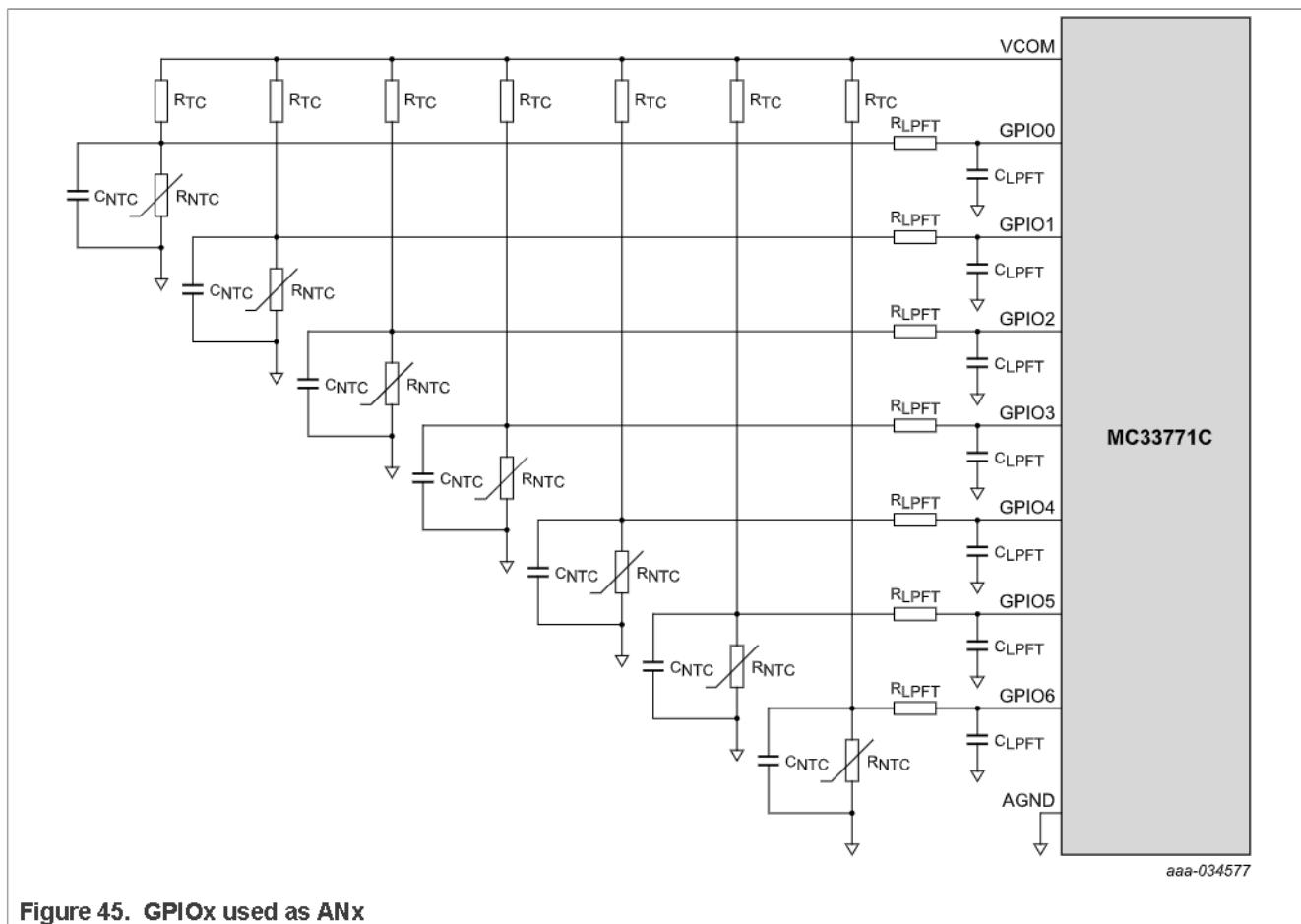


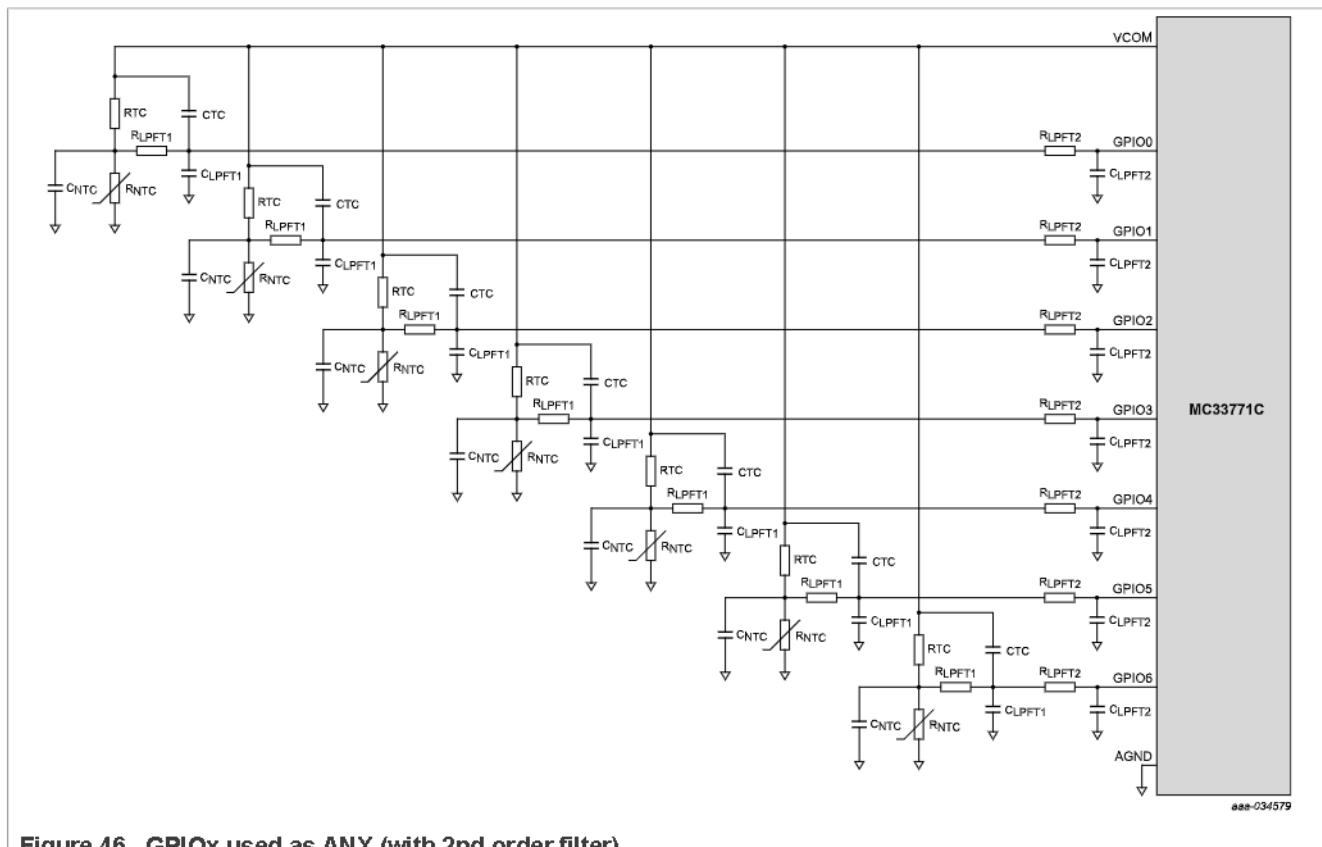
Figure 45. GPIOx used as ANx

Table 92. ANx filter components

ID	Value	Units	Comments
R_{TC}	6.8	k Ω	Component with 1 % tolerance, for accurate temperature measurement. Proposed value, together with all other proposed values, gives approximately $f_{CUTT} = 10$ kHz. See Equation (18) , Equation (19) , Equation (20) , and Equation (21) .
R_{NTC}	10	k Ω	Nominal resistance value is given at 25 °C, tolerance must be 5 % or better
C_{NTC}	1.2	nF	This component is for ESD protection
R_{LPFT}	3.3	k Ω	Influences the channel bandwidth. See Equation (18) , Equation (19) , Equation (20) , and Equation (21) .
C_{LPFT}	1.2	nF	5 % tolerance or better. Influences the channel bandwidth. See Equation (18) , Equation (19) , Equation (20) , and Equation (21) .

The signal cutoff frequency (in Hz) for the arrangement shown in [Figure 45](#) of GPIOx used as radiometric analog inputs, depends on the measurement time constant τ_T , given by the following formula. Ideally, the current channel should have the same bandwidth as cell voltage channels.

$$f_{cutT} = 1 / (2\pi\tau_T) \quad (18)$$


where,

$$\tau_T = \max(\tau_1, \tau_2) \quad (19)$$

$$\tau_1 = (R_{LPFT} + (R_{TC}R_{NTC}) / (R_{TC} + R_{NTC}))C_{LPFT} \quad (20)$$

$$\tau_2 = C_{NTC}(R_{TC}R_{NTC}) / (R_{TC} + R_{NTC}) \quad (21)$$

In case the NTC resistor is located outside of the board and can be submitted to large EMC and ESD Gun constraints, the recommended filter for temperature is 2nd order as shown in [Figure 46](#).

Figure 46. GPIOx used as ANx (with 2nd order filter)

Table 93. ANx second order filter components

ID	Value	Units	Comments
R_{TC}	6.8	k Ω	Component with 1 % tolerance, for accurate temperature measurement
C_{TC}	1.2	nF	
R_{NTC}	10	k Ω	Nominal resistance value is given at 25 °C, tolerance must be 5 % or better
C_{NTC}	1.2	nF	This component is for ESD protection
C_{LPFT1}	1.2	nF	5 % tolerance or better
R_{LPFT1}	3.3	k Ω	

Table 93. ANx second order filter components...continued

ID	Value	Units	Comments
C_{LPFT2}	1.2	nF	5 % tolerance or better
R_{LPFT2}	3.3	kΩ	

13.2.6 Centralized applications

13.2.6.1 Centralized applications - Transformer or capacitive isolation - Master node

For capacitive isolation in a centralized system the schematic is split into two segments. The first segment displays the external component of master node as shown in [Figure 47](#). The second segment displays the external components between two MC33771C ICs as shown in [Figure 48](#). In high voltage system applications, a high voltage isolation transformer is recommended between master node and first slave node.



Figure 47. Master node in a centralized application with transformer isolation

Table 94. Master node components for a centralized application with transformer or capacitive isolation

ID	Value	Units	Comments
C_{TPL}	68	pF	Ceramic capacitor
C_{TRM}	4.7	nF	Ceramic capacitor for split termination of MC33664
R_{TRM}	75	Ω	Split termination resistor for MC33664
PROT	8	V	ESD protection. Use PESD5VOV1BB or equivalent. The indicated voltage is the nominal breakdown voltage.
R_{TAP}	150	Ω	Center tap resistor
C_{TAP}	10	nF	Center tap capacitor

Table 94. Master node components for a centralized application with transformer or capacitive isolation...continued

ID	Value	Units	Comments
C_{BCC}	220	pF	Ceramic capacitor
Choke +1:1 TR	Pulse Electronic HM2103	NA	Single channel transformer with common mode choke
FBD	120	Ω	Ferrite Bead (optional). Use MMZ1608Y121BTD25 or equivalent.

13.2.6.2 Centralized applications - Capacitive isolation - Slave node

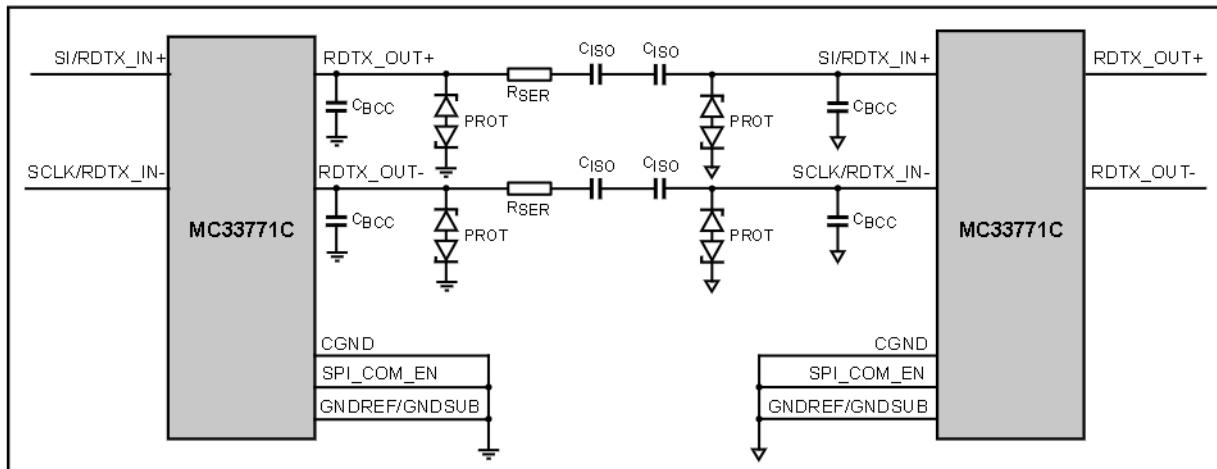


Figure 48. Slave node for a centralized application with capacitive isolation

Table 95. Slave node components for a centralized application with capacitive isolation

ID	Value	Units	Comments
C_{BCC}	22	pF	Ceramic capacitor
R_{SER}	62	Ω	Series resistance
C_{ISO}	10	nF	Isolation capacitor
PROT	8	V	ESD protection. Use PESD5V0V1BB or equivalent. The indicated voltage is the nominal breakdown voltage.

13.2.6.3 Centralized applications - Transformer isolation - Slave node

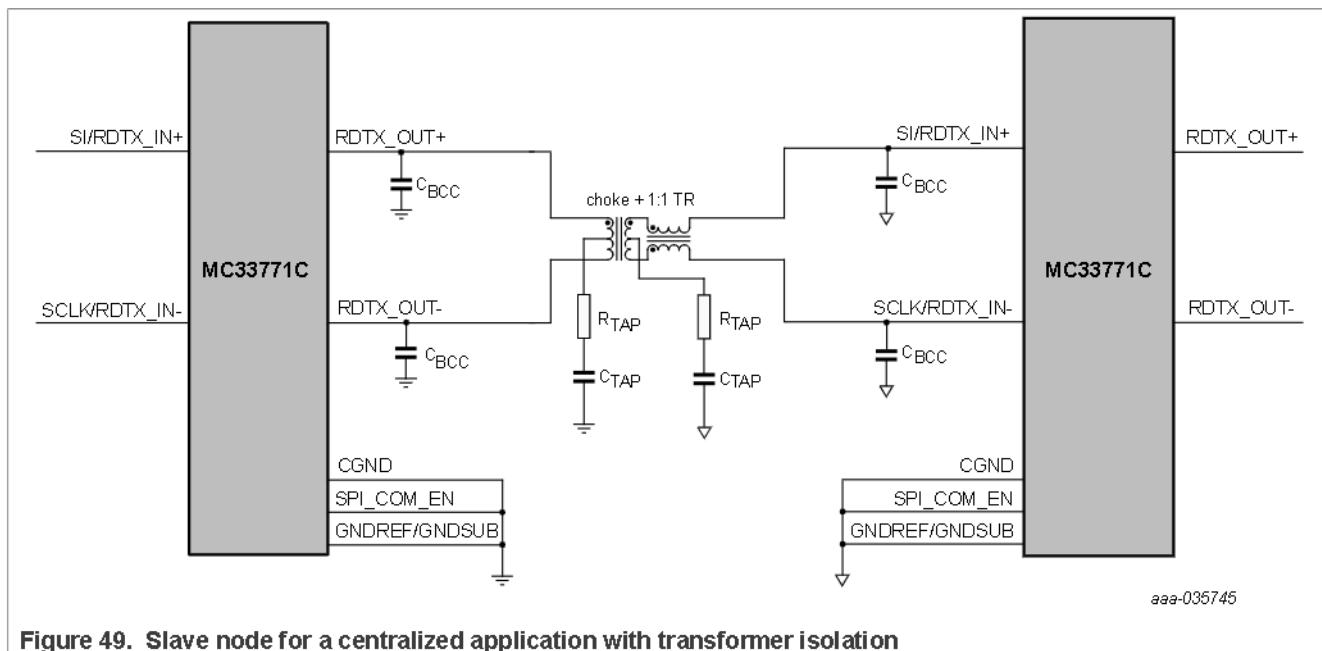


Figure 49. Slave node for a centralized application with transformer isolation

Table 96. Slave node components for a centralized application with transformer isolation

ID	Value	Units	Comments
C _{BCC}	220	pF	Ceramic capacitor
C _{TAP}	10	nF	Center tap capacitor
R _{TAP}	150	Ω	Center tap resistor

13.2.7 Distributed applications

13.2.7.1 Distributed systems - Master node

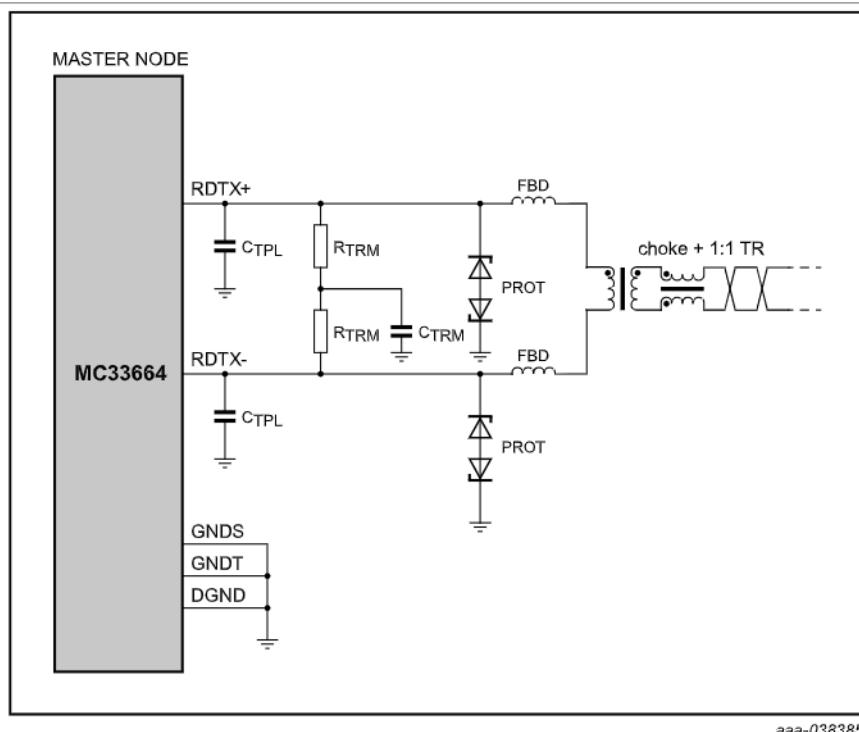
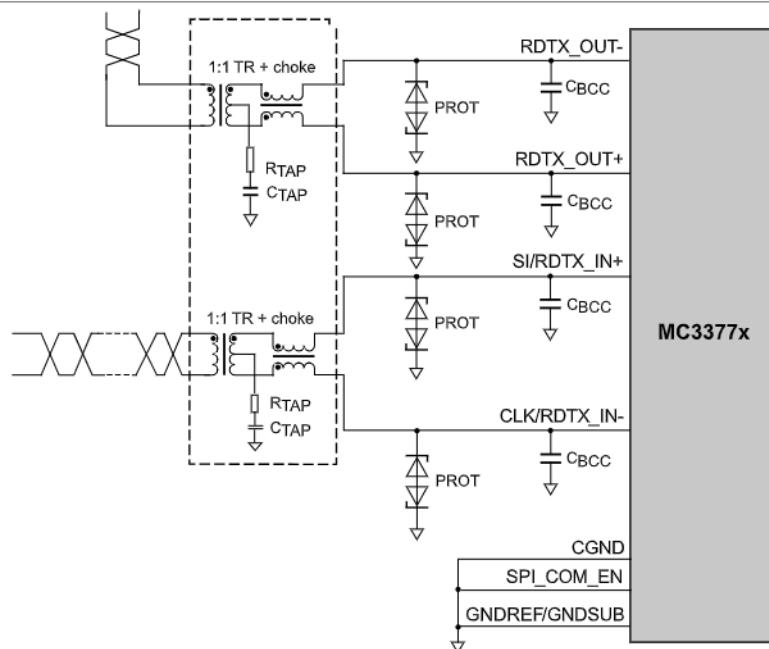



Figure 50. Master node in a distributed system (transformer isolation only)

Table 97. Master node components in a distributed system

ID	Value	Units	Comments
C_{TPL}	68	pF	Ceramic capacitor
C_{TRM}	4.7	nF	Ceramic capacitor for split termination of MC33664
R_{TRM}	75	Ω	Split termination resistor for MC33664
PROT	8	V	ESD protection. Use PESD5V0V1BB or equivalent. The indicated voltage is the nominal breakdown voltage.
Choke + 1:1 TR	Pulse Electronic HM2103	NA	Single channel transformer with common mode choke
FBD	470	Ω	Ferrite Bead (optional). Use MMZ1608Q471BTD25 or equivalent

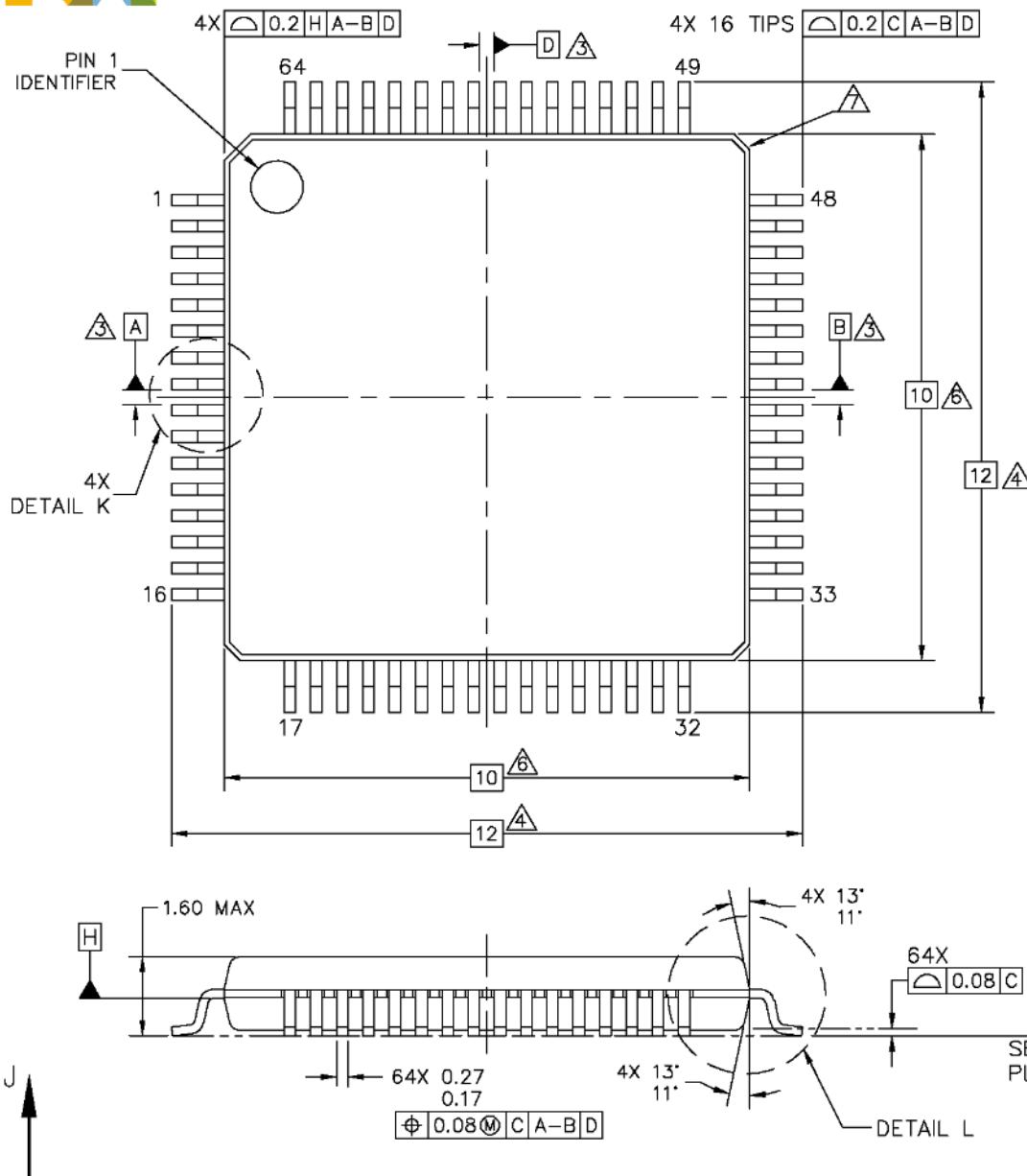
13.2.7.2 Distributed applications - Slave node

aaa-034578

Figure 51. Slave node of a distributed application (transformer isolation only)

Table 98. Slave node components in a distributed application

ID	Value	Units	Comments
C_{BCC}	220	pF	Ceramic capacitor
PROT	8	V	ESD protection. Use PESD5V0V1BB or equivalent. The indicated voltage is the nominal breakdown voltage.
C_{TAP}	10	nF	Center tap capacitor
R_{TAP}	150	Ω	Center tap resistor
1:1 TR + choke	PULSE Electronic HM2102		Dual channel transformer with common mode choke


14 Packaging

14.1 Package mechanical dimensions

Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and perform a keyword search for the drawing's document number.

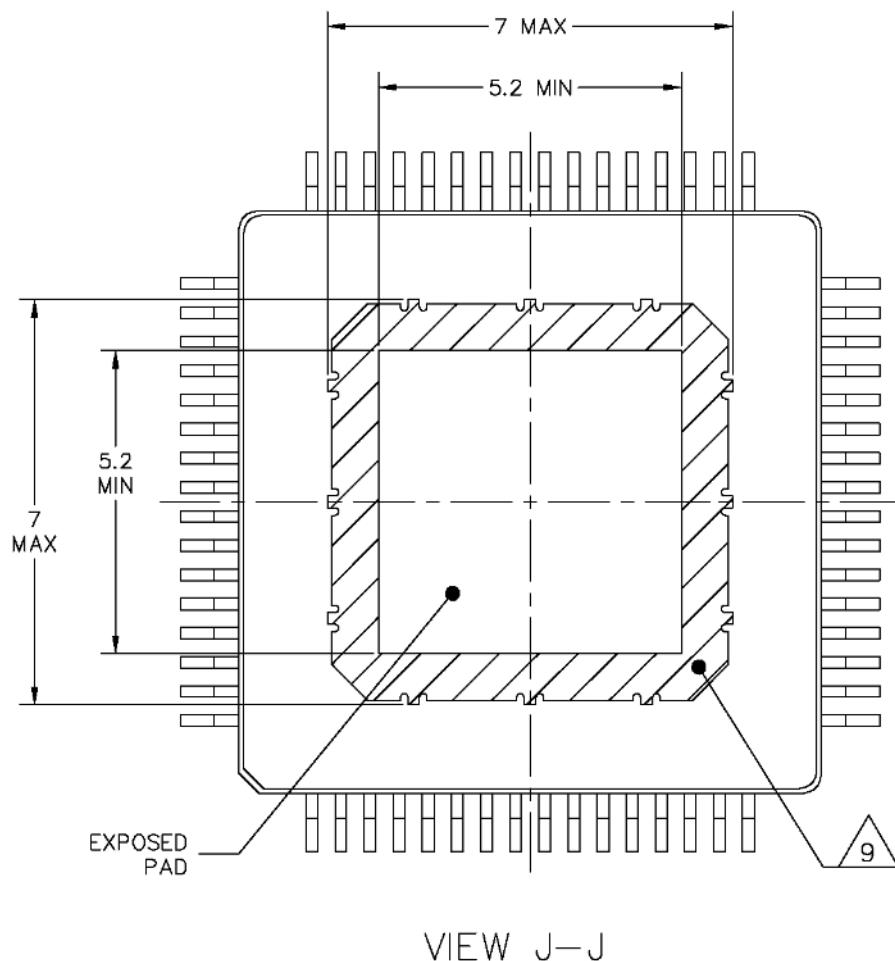
Table 99. Package outline

Package	Suffix	Package outline drawing number
64-pin LQFP-EP	AE	98ASA10763D

© NXP SEMICONDUCTORS N. V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE	PRINT VERSION NOT TO SCALE
TITLE: LQFP, 10 X 10 X 1.4 PKG, 0.5 PITCH, 64LD, 6.1 x 6.1 EXPOSED PAD	DOCUMENT NO: 98ASA10763D	REV: E
	STANDARD: JEDEC MS-026 BCD	
	SOT1510-2	29 JUN 2018

Figure 52. Package outline

All information provided in this document is subject to legal disclaimers.


© 2024 NXP B.V. All rights reserved.

Product data sheet

Rev. 7.0 — 16 July 2024

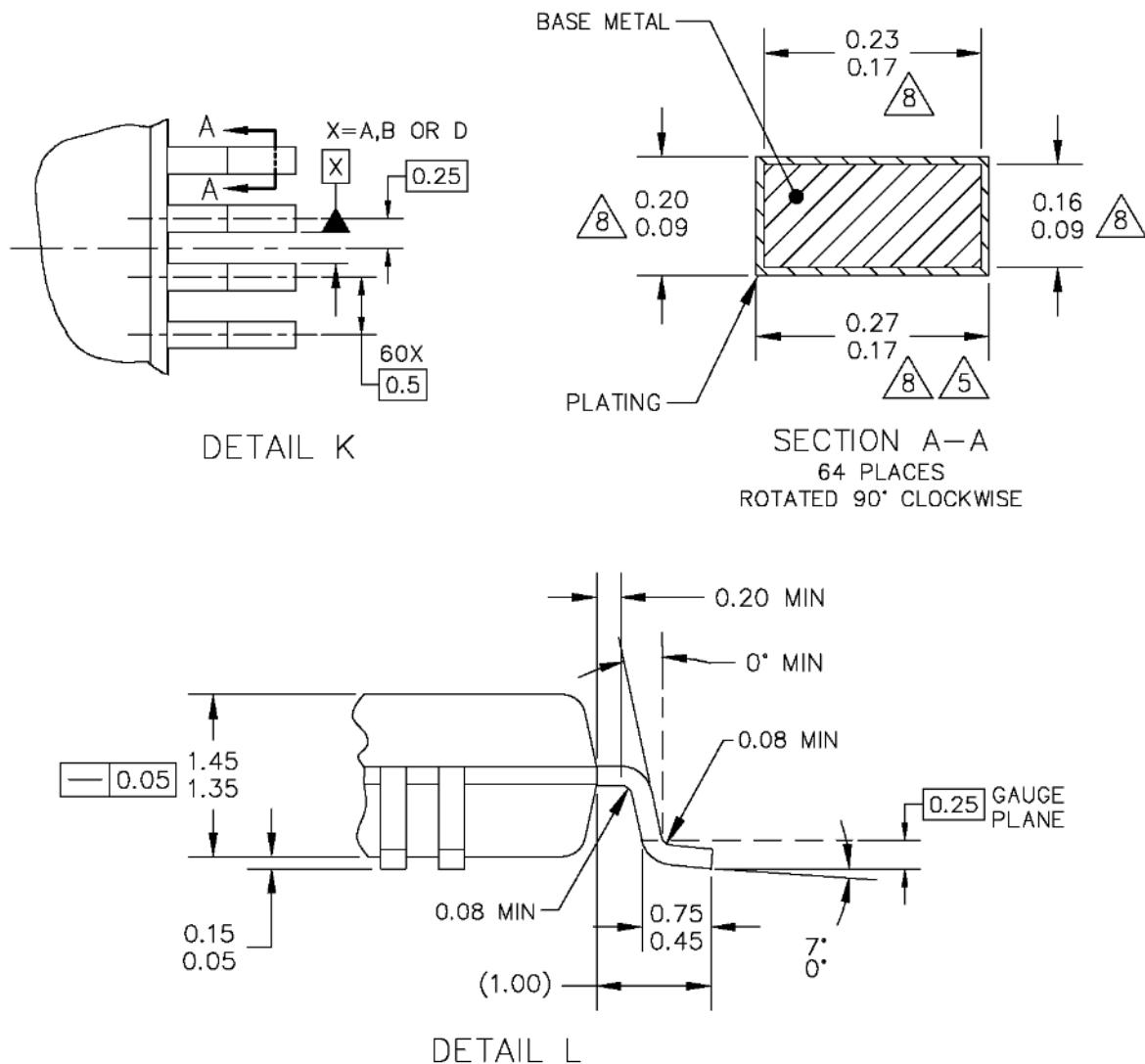
Document feedback

122 / 138

© NXP SEMICONDUCTORS N. V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE	PRINT VERSION NOT TO SCALE
TITLE: LQFP, 10 X 10 X 1.4 PKG, 0.5 PITCH, 64LD, 6.1 x 6.1 EXPOSED PAD	DOCUMENT NO: 98ASA10763D	REV: E
	STANDARD: JEDEC MS-026 BCD	
	SOT1510-2	29 JUN 2018

Figure 53. Package outline

All information provided in this document is subject to legal disclaimers.


© 2024 NXP B.V. All rights reserved.

Product data sheet

Rev. 7.0 — 16 July 2024

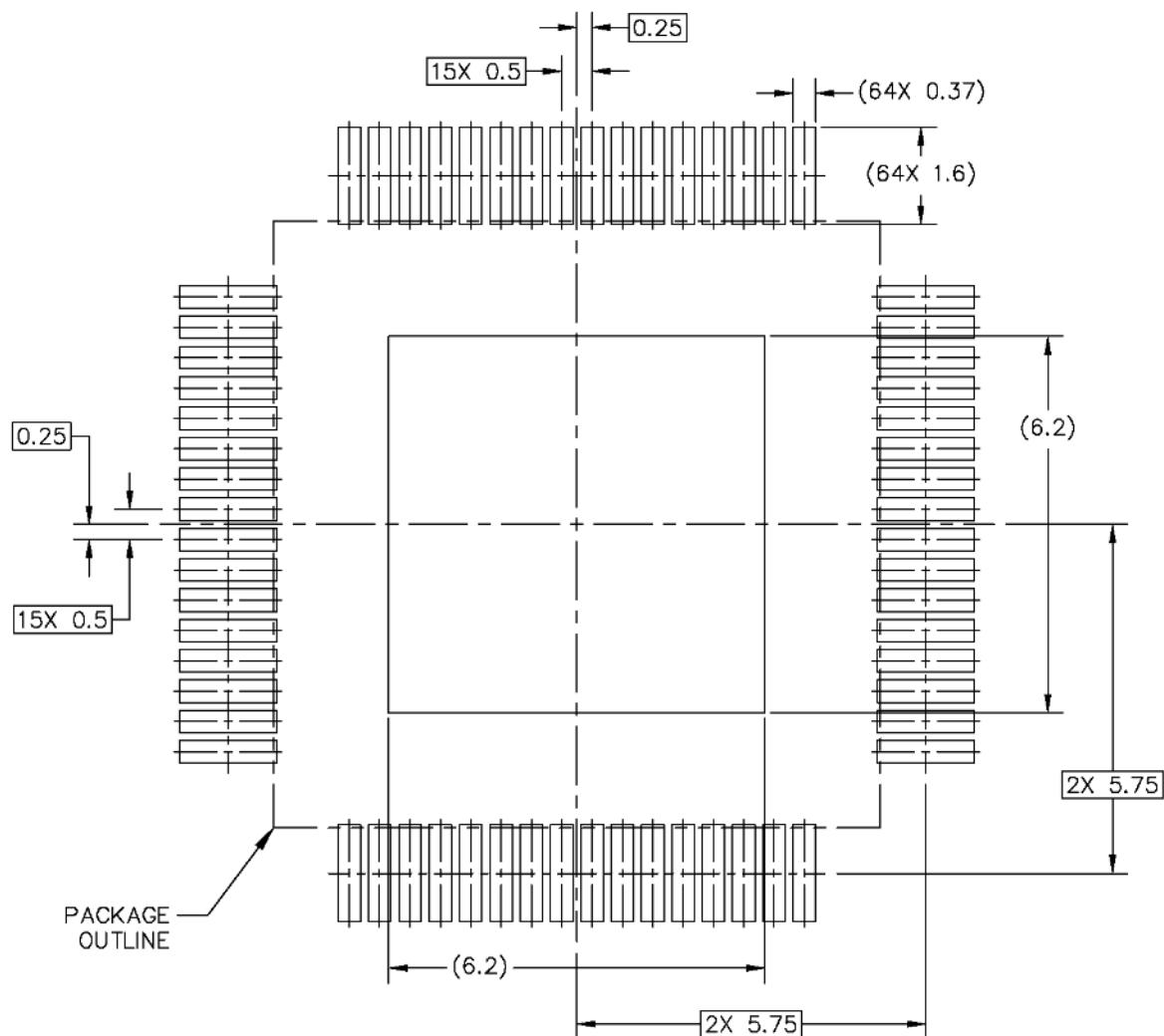
Document feedback

123 / 138

© NXP SEMICONDUCTORS N. V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE	PRINT VERSION NOT TO SCALE
TITLE: LQFP, 10 X 10 X 1.4 PKG, 0.5 PITCH, 64LD, 6.1 x 6.1 EXPOSED PAD	DOCUMENT NO: 98ASA10763D STANDARD: JEDEC MS-026 BCD SOT1510-2	REV: E 29 JUN 2018

Figure 54. Package outline

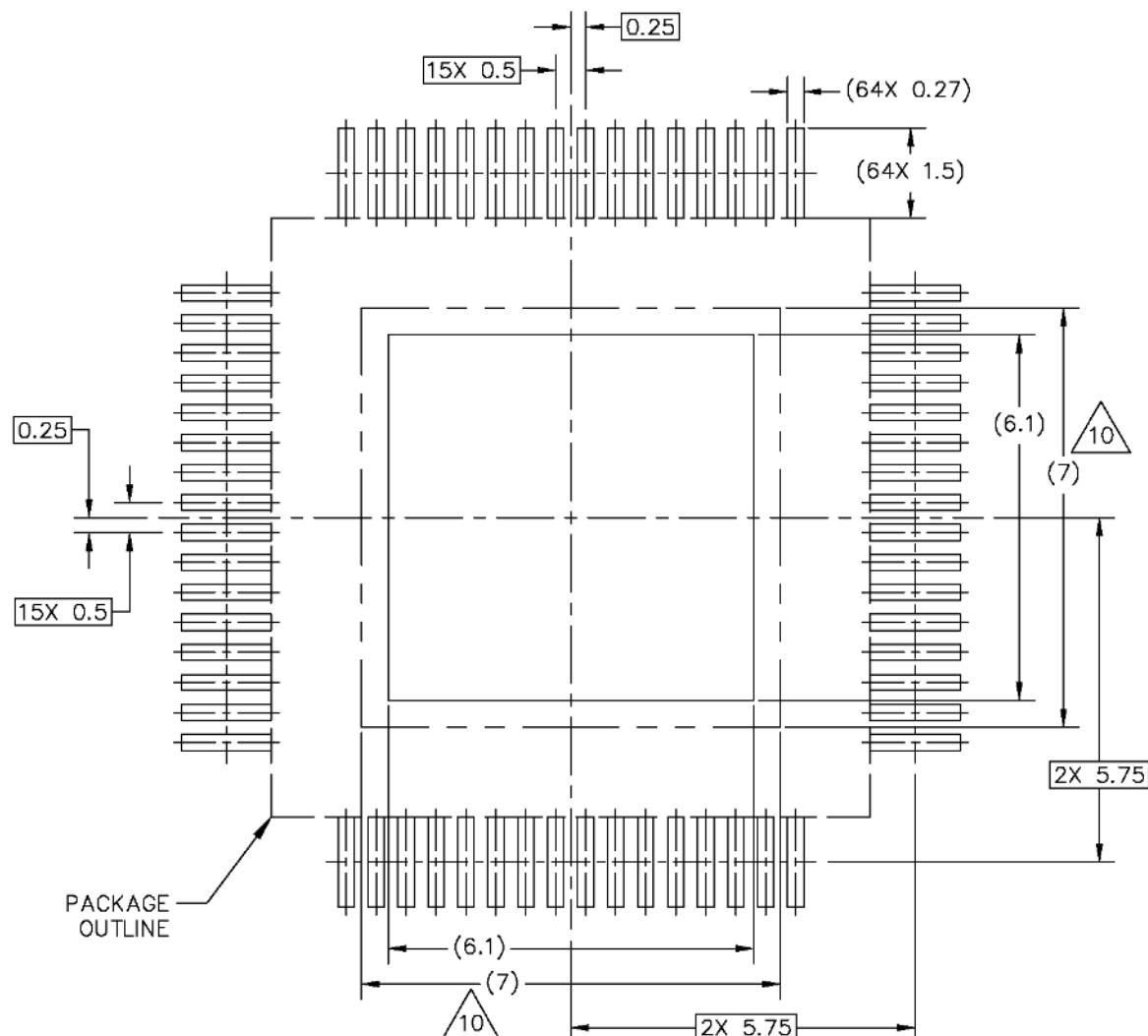
All information provided in this document is subject to legal disclaimers.


© 2024 NXP B.V. All rights reserved.

Product data sheet

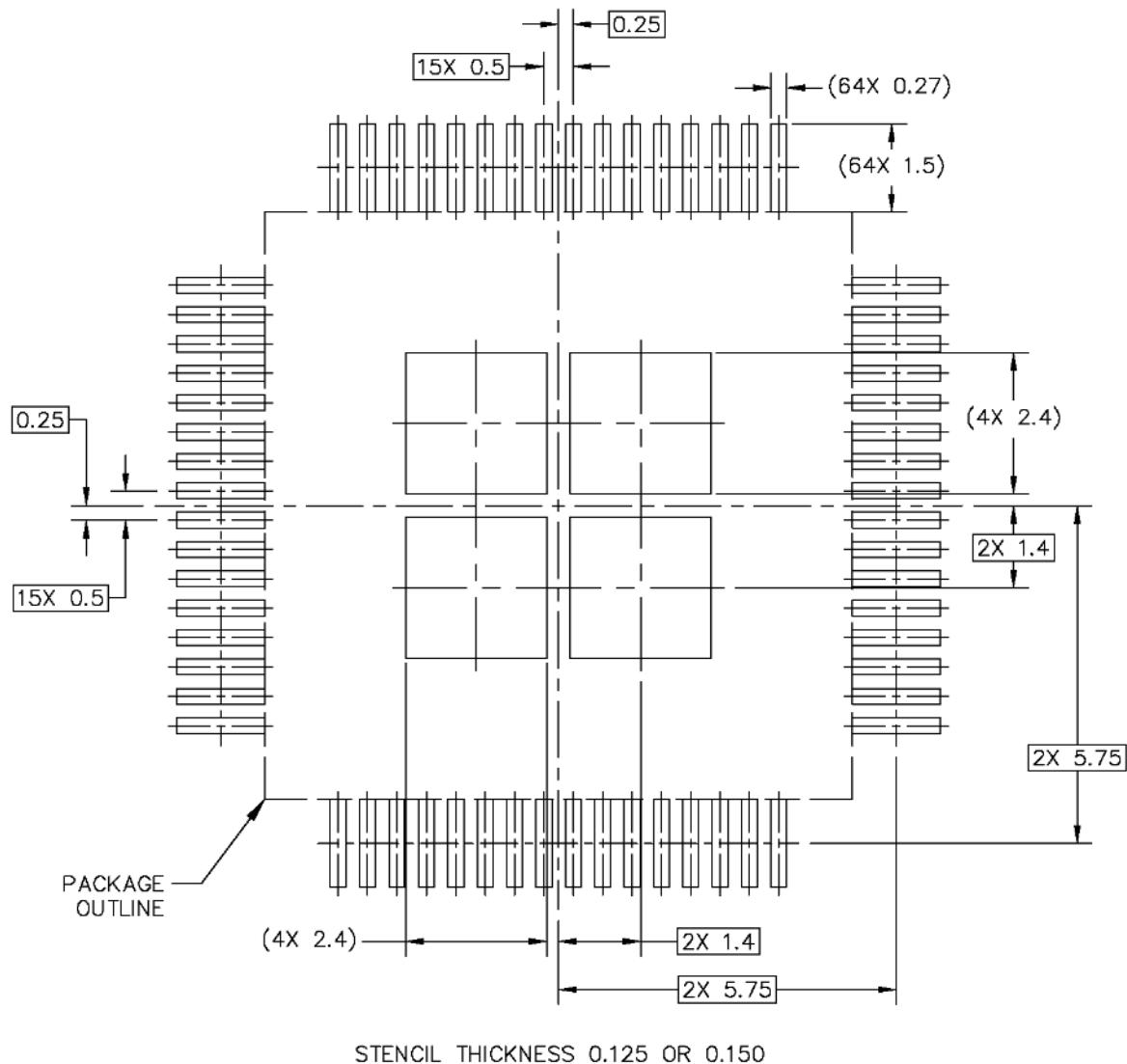
Rev. 7.0 — 16 July 2024

Document feedback


Feedback
124 / 138

PCB DESIGN GUIDELINES – SOLDER MASK OPENING PATTERN

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.


© NXP SEMICONDUCTORS N. V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE	PRINT VERSION NOT TO SCALE
TITLE: LQFP, 10 X 10 X 1.4 PKG, 0.5 PITCH, 64LD, 6.1 x 6.1 EXPOSED PAD	DOCUMENT NO: 98ASA10763D	REV: E
	STANDARD: JEDEC MS-026 BCD	
	SOT1510-2	29 JUN 2018

PCB DESIGN GUIDELINES – I/O PADS AND SOLDERABLE AREA

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

© NXP SEMICONDUCTORS N. V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE	PRINT VERSION NOT TO SCALE
TITLE: LQFP, 10 X 10 X 1.4 PKG, 0.5 PITCH, 64LD, 6.1 x 6.1 EXPOSED PAD	DOCUMENT NO: 98ASA10763D	REV: E
	STANDARD: JEDEC MS-026 BCD	
	SOT1510-2	29 JUN 2018

PCB DESIGN GUIDELINES – SOLDER PASTE STENCIL

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

© NXP SEMICONDUCTORS N. V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE	PRINT VERSION NOT TO SCALE
TITLE: LQFP, 10 X 10 X 1.4 PKG, 0.5 PITCH, 64LD, 6.1 x 6.1 EXPOSED PAD	DOCUMENT NO: 98ASA10763D	REV: E
	STANDARD: JEDEC MS-026 BCD	
	SOT1510-2	29 JUN 2018

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.
4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.
5. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM DIMENSION BY MORE THAN 0.08 MM. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07 MM.
6. DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE. DIMENSIONS ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.
8. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 MM AND 0.25 MM FROM THE LEAD TIP.
9. HATCHED AREA REPRESENTS POSSIBLE MOLD FLASH ON EXPOSED PAD.
10. KEEP OUT ZONE REPRESENTS AREA ON PCB THAT MUST NOT HAVE ANY EXPOSED METAL (EG. TRACE/VIA) FOR PCB ROUTING DUE TO THE POSSIBILITY OF SHORTING TO TIE BAR/EXPOSED PAD.

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE	PRINT VERSION NOT TO SCALE
TITLE: LQFP, 10 X 10 X 1.4 PKG, 0.5 PITCH, 64LD, 6.1 x 6.1 EXPOSED PAD	DOCUMENT NO: 98ASA10763D	REV: E
	STANDARD: JEDEC MS-026 BCD	
	SOT1510-2	29 JUN 2018

Figure 58. Package outline

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

15 Contact information

For more information, please visit: <http://www.nxp.com>

For sales office addresses, please send an email to: salesaddresses@nxp.com

16 Revision history

Table 100. Revision history

Full revision history available on request

Document ID	Release date	Description
MC33771C v.7.0	16 July 2024	<ul style="list-style-type: none"> Product data sheet Supersedes MC33771C v.6.0 Updated status from confidential to public Updated Revision history and Legal information to conform with updated NXP standards
MC33771C v.6.0	20210510	<ul style="list-style-type: none"> Product data sheet Supersedes MC33771C v.5.0 Updated per CIN 202103031I Changed the maximum normal operating voltage from 61.6 V to 63 V throughout the document Section 8.4, Table 8 <ul style="list-style-type: none"> Changed VPWR(OV_FLAG) VPWR overvoltage fault threshold (flag) minimum value from 62 V to 63 V Changed VANx_RATIO_RES typical value from VCOM(30.51851) to VCOM*30.51758 Added footnote 16 to parameters V_{IH}, V_{IL} and V_{HYS} regarding use of GPIO0 as wake-up Added parameter t_{NOWUP} Changed $t_{WAVE_DC_BIT00}$ minimum and maximum values, from 476 μs to 450 μs and 537 μs to 550 μs Changed $t_{WAVE_DC_BIT01}$ minimum and maximum values, from 0.95 ms to 0.9 ms and 1.06 ms to 1.1 ms Changed $t_{WAVE_DC_BIT10}$ minimum and maximum values, from 9.53 ms to 9 ms and 10.53 ms to 11 ms Changed $t_{WAVE_DC_BIT11}$ minimum and maximum values, from 95.25 ms to 90 ms and 105.25 ms to 110 ms Changed $t_{WAVE_DC_ON}$ minimum and maximum values, from 476 μs to 450 μs and 537 μs to 550 μs Updated HTOL duration in footnote 9 from 1000 h to 3000 h Modified footnote 14 to reference Safety Manual for safety margin, removed footnote from parameter V_{REF_ZD} and added it to parameters V_{CVFV} and $ADC1a_{FV}$, $ADC1b_{FV}$ For parameter t_{SPI_TD}, added reference to footnote 18 Changed t_{TPL_TD} minimum value, from 4.0 μs to 3.8 μs Added t_{TPL_TD} typical and maximum values, 4.0 μs and 4.25 μs Added footnote 23 to t_{TPL_TD} Added t_{EOM} minimum value, 238 μs Added footnotes 21 and 25 to t_{RES} Section 9.3, Table 11: Corrected system states and corresponding power supply modes Section 9.7: Changed unit for COULOMB_CNT·V2RES / RSHUNT from μA to A in paragraph Section 9.8.1: Detailed bits name in paragraph Section 9.8.3: Reworded several sentences in the section Section 9.8.5: Reworded last sentence of first paragraph and corrected typos in second paragraph

Table 100. Revision history...continued

Full revision history available on request

Document ID	Release date	Description
		<ul style="list-style-type: none"> • Section 9.9: Added precisions in the fourth sentence of the third paragraph • Section 9.11: Modified list item number 2 as well as third paragraph of the section • Section 9.12, Table 14: Changed references to CTx_OV_TH with correct CT number • Section 10.1, Figure 20: Reworded descriptive sentence • Section 10.2.1: Updated Figure 22 • Section 10.2.5, Figure 29: Added signals name to the diagram • Section 10.2.6.2 <ul style="list-style-type: none"> – Added precision on the device mode at the beginning of the second paragraph – Added the four first notes, and added precisions in the second sentence of the fifth note – Figure 31: Updated figure with a second behaviour description (TPL wake-up sequence incomplete) • Section 10.4.1: Removed part of a sentence concerning content of the data field described in Table 23 • Section 11 <ul style="list-style-type: none"> – Made cosmetic changes to bring Write rows into compliance with stylistic standards – Corrected blank bit fields in Read row to contain the value 0 – Fixed typos in bit field names – Removed empty rows from tables – Changed Write cells from "0" to "Write 0 to Clear" for relevant bit fields • Section 11.1, Table 34: Corrected description of COM_STATUS register from "Number of CRC error counted" to "Number of COM error counted" • Section 11.4, Table 38 <ul style="list-style-type: none"> – Bit 0: Changed to contain "x" in both Read and Write cells – Bit 8 - Changed to "Do not change" • Section 11.5, Table 39, bits 15, 14, 13, 3 and 2: Changed to contain "x" in both Read and Write cells • Section 11.7, Table 41, bit 6: Changed to contain "x" in both Read and Write cells • Section 11.8, Table 42, bit 9: Changed to contain "x" in both Read and Write cells • Section 11.18: Modified description of GPIOx_DR • Section 11.24 and Section 11.28 <ul style="list-style-type: none"> – Modified list of bits marked * – Added new mark ** • Section 11.30, Table 64, bit 8: Changed to read-zero only • Section 11.1 and Section 11.47: Exchanged DED_ENCODE 1 and DED_ENCODE 2 • Section 13.2.1: Modified paragraph regarding CTREF variations (optional diodes)
MC33771C v.5.0	21 November 2019	Product data sheet
MC33771C v.4.0	30 October 2019	Product data sheet

Table 100. Revision history...continued

Full revision history available on request

Document ID	Release date	Description
MC33771C v.3.0	11 July 2019	Objective data sheet
MC33771C v.2.0	06 March 2019	Product preview
MC33771C v.1.0	14 December 2018	Product preview

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <https://www.nxp.com>.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <https://www.nxp.com/profile/terms>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Suitability for use in automotive applications — This NXP product has been qualified for use in automotive applications. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

Tables

Tab. 1.	Part number breakdown	4
Tab. 2.	Advanced orderable part table	5
Tab. 3.	Premium orderable part table	5
Tab. 4.	Pin definitions	7
Tab. 5.	Ratings vs. operating requirements	10
Tab. 6.	Maximum ratings	10
Tab. 7.	Thermal ratings	12
Tab. 8.	Static and dynamic electrical characteristics	12
Tab. 9.	Working mode versus measurements	24
Tab. 10.	Recommended capacitor values for power supply decoupling	25
Tab. 11.	Power supply mode operation	27
Tab. 12.	GPIO port configurations	40
Tab. 13.	Gain format	47
Tab. 14.	Gain compensation	47
Tab. 15.	Sequence of read operations	50
Tab. 16.	Sequence of write operations	50
Tab. 17.	SPI command format	52
Tab. 18.	SPI response format	53
Tab. 19.	TPL encoding	54
Tab. 20.	Data preparation for CRC encoding	60
Tab. 21.	Command CRC calculation examples	61
Tab. 22.	Response CRC calculation examples	61
Tab. 23.	Read command table	61
Tab. 24.	Read response table	62
Tab. 25.	Legend for read command, read response tables	62
Tab. 26.	Write command table	63
Tab. 27.	Legend for write command and write response tables	63
Tab. 28.	Global write command table	63
Tab. 29.	Legend for global write command table	64
Tab. 30.	No operation command table	64
Tab. 31.	Legend for no operation command and no operation response tables	64
Tab. 32.	Command summary table	65
Tab. 33.	Response summary table	65
Tab. 34.	Register table	66
Tab. 35.	Mirror memory	70
Tab. 36.	INIT	72
Tab. 37.	SYS_CFG_GLOBAL	72
Tab. 38.	SYS_CFG1	73
Tab. 39.	SYS_CFG2	74
Tab. 40.	SYS_DIAG	75
Tab. 41.	ADC_CFG	76
Tab. 42.	ADC2_OFFSET_COMP	78
Tab. 43.	OV_UV_EN	79
Tab. 44.	CELL_OV_FLT	80
Tab. 45.	CELL_UV_FLT	80
Tab. 46.	TPL_CFG	81
Tab. 47.	CBX_CFG	81
Tab. 48.	CB_OPEN_FLT	82
Tab. 49.	CB_SHORT_FLT	82
Tab. 50.	CB_DRV_STS	82
Tab. 51.	GPIO_CFG1	83
Tab. 52.	GPIO_CFG2	83
Tab. 53.	GPIO_STS	84
Tab. 54.	AN_OT_UT_FLT	84
Tab. 55.	GPIO_SHORT_ANx_OPEN_STS	84
Tab. 56.	I_STATUS	85
Tab. 57.	COM_STATUS	85
Tab. 58.	FAULT1_STATUS	86
Tab. 59.	FAULT2_STATUS	88
Tab. 60.	FAULT3_STATUS	90
Tab. 61.	FAULT_MASK1	90
Tab. 62.	FAULT_MASK2	91
Tab. 63.	FAULT_MASK3	91
Tab. 64.	WAKEUP_MASK1	91
Tab. 65.	WAKEUP_MASK2	92
Tab. 66.	WAKEUP_MASK3	92
Tab. 67.	CC_NB_SAMPLES	92
Tab. 68.	COULOMB_CNT1	93
Tab. 69.	COULOMB_CNT2	93
Tab. 70.	MEAS_ISENSE1	93
Tab. 71.	MEAS_ISENSE2	94
Tab. 72.	MEAS_xxxx	94
Tab. 73.	TH_ALL_CT	95
Tab. 74.	TH_CTX	95
Tab. 75.	TH_ANX_OT	96
Tab. 76.	TH_ANX_UT	96
Tab. 77.	TH_ISENSE_OC	96
Tab. 78.	TH_COULOMB_CNT_MSB	97
Tab. 79.	TH_COULOMB_CNT_LSB	97
Tab. 80.	SILICON_REV	97
Tab. 81.	EEPROM_CTRL	98
Tab. 82.	DED_ENCODE1	98
Tab. 83.	DED_ENCODE2	99
Tab. 84.	FUSE_MIRROR_DATA	99
Tab. 85.	FUSE_MIRROR_CNTL	99
Tab. 86.	RESERVED	100
Tab. 87.	FUSE_BANK	100
Tab. 88.	CT filter components	106
Tab. 89.	Stacked cells arrangements	107
Tab. 90.	Components to avoid hot plug issues	112
Tab. 91.	ISENSE filter components	113
Tab. 92.	ANx filter components	115
Tab. 93.	ANx second order filter components	116
Tab. 94.	Master node components for a centralized application with transformer or capacitive isolation	117
Tab. 95.	Slave node components for a centralized application with capacitive isolation	118
Tab. 96.	Slave node components for a centralized application with transformer isolation	119
Tab. 97.	Master node components in a distributed system	120
Tab. 98.	Slave node components in a distributed application	121
Tab. 99.	Package outline	121
Tab. 100.	Revision history	130

Figures

Fig. 1.	Simplified application diagram, SPI use case	2	Fig. 33.	MC33771C calibration registers	66
Fig. 2.	Simplified application diagram, TPL use case	3	Fig. 34.	Centralized battery monitoring system with capacitive isolation	102
Fig. 3.	Simplified internal block diagram	6	Fig. 35.	Centralized battery monitoring system with transformer isolation	103
Fig. 4.	Pinout diagram	7	Fig. 36.	Distributed battery monitoring system	104
Fig. 5.	Low-voltage SPI interface timing	23	Fig. 37.	Example of multiple daisy chain	104
Fig. 6.	Transformer communication signaling	23	Fig. 38.	Example of loop-back daisy chain	105
Fig. 7.	Recommended decoupling of power supplies	25	Fig. 39.	Second order cell terminal filters and cell balancing resistors (internal cell balancing MOSFETs are shown for clarity)	106
Fig. 8.	Operating mode state diagram	27	Fig. 40.	LPF block masking	108
Fig. 9.	ADC converter: incremental phase (left) and cyclic phase (right)	30	Fig. 41.	The seven cell configuration	109
Fig. 10.	ADC conversion sequence in normal mode	31	Fig. 42.	The twelve cell configuration	110
Fig. 11.	ADC1-B voltage measurement chain	33	Fig. 43.	Top cell terminal filters and balancing resistors, VPWR1, 2 components to withstand hot plug	112
Fig. 12.	ADC1-A voltage measurement chain	34	Fig. 44.	Bottom cell terminal filters, cell balancing components and current channel filter	113
Fig. 13.	Current measurement channel	35	Fig. 45.	GPIOx used as ANx	115
Fig. 14.	Current measurement channel (gain vs. input signal amplitude)	36	Fig. 46.	GPIOx used as ANX (with 2nd order filter)	116
Fig. 15.	Coulomb counter different behaviors	37	Fig. 47.	Master node in a centralized application with transformer isolation	117
Fig. 16.	GPIO internal input structure	41	Fig. 48.	Slave node for a centralized application with capacitive isolation	118
Fig. 17.	Heartbeat daisy chain	43	Fig. 49.	Slave node for a centralized application with transformer isolation	119
Fig. 18.	Memories	46	Fig. 50.	Master node in a distributed system (transformer isolation only)	120
Fig. 19.	Mirror memory control	50	Fig. 51.	Slave node of a distributed application (transformer isolation only)	121
Fig. 20.	SPI interface termination	51	Fig. 52.	Package outline	122
Fig. 21.	SPI transmission	53	Fig. 53.	Package outline	123
Fig. 22.	TPL Pulses	54	Fig. 54.	Package outline	124
Fig. 23.	SOM	54	Fig. 55.	Package outline	125
Fig. 24.	EOM	55	Fig. 56.	Package outline	126
Fig. 25.	Logic 1	55	Fig. 57.	Package outline	127
Fig. 26.	Logic 0	55	Fig. 58.	Package outline	128
Fig. 27.	Bus traffic example	56			
Fig. 28.	Bus traffic with receive error and recovery	56			
Fig. 29.	Transformer communication waveforms	57			
Fig. 30.	MC33771C system wake-up	58			
Fig. 31.	Pack controller system wake-up	59			
Fig. 32.	Command and response mode – example	60			
	CRC encoder	60			

Contents

1	General description	1	9.13	Mirror memory access	49
2	Features	1	10	Communication	51
3	Simplified application diagram	2	10.1	SPI communication	51
4	Applications	3	10.2	TPL communication	53
5	Ordering information	4	10.2.1	TPL Encoding	54
5.1	Part numbers definition	4	10.2.2	Command message bit order	55
5.2	Part numbers list	5	10.2.3	Response message bit order	55
6	Internal block diagram	6	10.2.4	Transformer communication format	55
7	Pinning information	7	10.2.5	Transformer communication timing	57
7.1	Pinout diagram	7	10.2.6	Transformer communication wake-up	57
7.2	Pin definitions	7	10.2.6.1	MC33771C System wake-up	57
8	General product characteristics	10	10.2.6.2	Pack controller system wake-up	58
8.1	Ratings and operating requirements relationship	10	10.3	CRC generation	60
8.2	Maximum ratings	10	10.4	Commands	61
8.3	Thermal characteristics	12	10.4.1	Read command and response	61
8.4	Electrical characteristics	12	10.4.2	Local write command	62
8.5	Timing diagrams	23	10.4.3	Global write command	63
9	Functional description	24	10.4.4	No operation command	64
9.1	Introduction	24	10.4.5	Command and response summary	65
9.2	Power supplies and reset	25	10.5	I2C communication interface	65
9.2.1	Decoupling of power supplies	25	11	Registers	66
9.2.2	VPWR overvoltage, low-voltage	26	11.1	Register map	66
9.2.3	VCOM supply	26	11.2	Initialization register – INIT	71
9.2.4	VANA supply	26	11.3	System configuration global register SYS_ CFG_GLOBAL	72
9.2.5	Power on reset (POR)	26	11.4	System configuration register 1 – SYS_ CFG1	73
9.2.6	Hardware and software reset	27	11.5	System configuration register 2 – SYS_ CFG2	74
9.3	Modes of operation	27	11.6	System diagnostics register – SYS_DIAG	75
9.3.1	Reset mode	28	11.7	ADC configuration register – ADC_CFG	76
9.3.2	Idle mode	28	11.8	Current measurement chain offset compensation – ADC2_OFFSET_COMP	78
9.3.3	Init mode	28	11.9	Cell select register – OV_UV_EN	79
9.3.4	Normal mode	28	11.10	Cell terminal overvoltage fault register – CELL_OV_FLT	79
9.3.5	Sleep mode	29	11.11	Cell terminal undervoltage fault register – CELL_UV_FLT	80
9.3.6	Diagnostic mode	29	11.12	TPL_CFG	80
9.4	Analog to digital converters ADC1-A, ADC1-B, ADC2	30	11.13	Cell balance configuration register – CBx_ CFG	81
9.4.1	High precision voltage reference	30	11.14	Cell balance open load fault detection register – CB_OPEN_FLT	82
9.4.2	Measurement sequence	30	11.15	Cell balance shorted load fault detection register – CB_SHORT_FLT	82
9.4.2.1	Voltage averaging	31	11.16	Cell balance driver on/off status register – CB_DRV_STS	82
9.5	Cell terminal voltage measurement	32	11.17	GPIO configuration register 1 – GPIO_ CFG1	83
9.6	Current measurement	34	11.18	GPIO configuration register 2 – GPIO_ CFG2	83
9.7	Coulomb counting	37	11.19	GPIO status register – GPIO_STS	84
9.8	GPIOx port control and diagnostics	39	11.20	Overtemperature/undertemperature fault register – AN_OT_UT_FLT	84
9.8.1	GPIOx used as digital I/O	42	11.21	GPIO open short register – GPIO_SHORT_ ANx_OPEN_STS	84
9.8.2	GPIO0 used as wake-up input or fault pin activation input	42			
9.8.3	FAULT pin daisy chain operation	42			
9.8.4	GPIO2 used as ADC trigger	43			
9.8.5	GPIOx used as analog	44			
9.8.6	GPIO5, GPIO6 used as ISENSE	44			
9.9	Cell balance control	44			
9.10	Internal IC temperature	45			
9.11	Internal temperature fault	45			
9.12	Storage of parameters in an optional EEPROM	45			
9.12.1	Gain correction of the current channel	48			

11.22	Current measurement status register – I_STATUS	85	13.2.6.1	Centralized applications - Transformer or capacitive isolation - Master node	117
11.23	Communication status register – COM_STATUS	85	13.2.6.2	Centralized applications - Capacitive isolation - Slave node	118
11.24	Fault status register 1 – FAULT1_STATUS	86	13.2.6.3	Centralized applications - Transformer isolation - Slave node	119
11.25	Fault status register 2 – FAULT2_STATUS	88	13.2.7	Distributed applications	120
11.26	Fault status register 3 – FAULT3_STATUS	90	13.2.7.1	Distributed systems - Master node	120
11.27	Fault mask register 1 – FAULT_MASK1	90	13.2.7.2	Distributed applications - Slave node	121
11.28	Fault mask register 2 – FAULT_MASK2	90	14	Packaging	121
11.29	Fault mask register 3 – FAULT_MASK3	91	14.1	Package mechanical dimensions	121
11.30	Wake-up mask register 1 – WAKEUP_MASK1	91	15	Contact information	129
11.31	Wake-up mask register 2 – WAKEUP_MASK2	91	16	Revision history	130
11.32	Wake-up mask register 3 – WAKEUP_MASK3	92		Legal information	133
11.33	Coulomb count number of samples register – CC_NB_SAMPLES	92			
11.34	Coulomb count register – COULOMB_CNT	92			
11.35	Current measurement registers – MEAS_ISENSE1 and MEAS_ISENSE2	93			
11.36	Measurement registers – MEAS_xxxx	94			
11.37	Overvoltage undervoltage threshold register – TH_ALL_CT	95			
11.38	Overvoltage undervoltage threshold register – TH_CTx	95			
11.39	Overtemperature, undertemperature threshold registers – TH_Anx_OT, TH_Anx_UT	96			
11.40	Overcurrent threshold register – TH_ISENSE_OC	96			
11.41	Over coulomb counter threshold registers – TH_COULOMB_CNT	97			
11.42	Silicon revision register – SILICON_REV	97			
11.43	EEPROM communication register EEPROM_CTRL	98			
11.44	ECC signature 1 register	98			
11.45	ECC signature 2 register	99			
11.46	FUSE mirror and data control	99			
11.47	Reserved	100			
11.48	Fuse bank	100			
12	Safety	101			
12.1	Safety features	101			
13	Typical applications	101			
13.1	Introduction	101			
13.1.1	Centralized battery management system	102			
13.1.2	Distributed battery management system	103			
13.1.3	Multiple daisy chain	104			
13.1.4	Loop-Back Daisy chain	105			
13.2	MC33771C External Components	105			
13.2.1	Cell terminal filters	105			
13.2.2	Unused cells	107			
13.2.3	Hot plug protection	111			
13.2.4	Current channel filter	113			
13.2.5	Temperature channels	114			
13.2.6	Centralized applications	117			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.