R

SINGLE-SUPPLY DUAL COMPARATOR

■ GENERAL DESCRIPTION

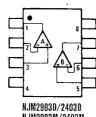
The NJM2903/2403 consist of two independent precision voltage comparators with an offset voltage specification as low as 5.0mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. The NJM2903/2403 has a unique characteristics: the input common-mode voltage range includes ground, even though operated from a single power supply voltage. Application areas include limit comparators, simple analog-to-digital converters; pulse, square-wave and time delay generators; wide range Vco; MOS clock timers; multivibrators and high voltage digital logic gates. The NJM2903/2403 were designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the NJM2903/2403 will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

■ PACKAGE OUTLINE

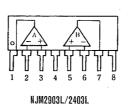
NJM29030/2403D

KJM2903M/2403M

CONTRACT OF THE PARTY OF THE PA

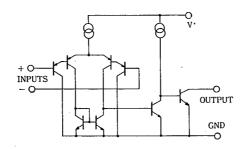

NJM2403V

NJM2903L/2403L


■ FEATURES

- Operating Voltage
- Single Supply Operation
- Open Collector Output
- High Output Sink Current
- Package Outline
- $(+2V \sim +36V)$
- (15mA @2403) DIP8, DMP8, SIP8, (SSOP8)
- Bipolar Technology

■ PIN CONFIGURATION


NJM2903D/2403D NJM2903M/2403M NJM2903V/2403V

PIN FUNCTION

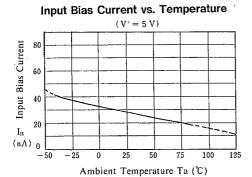
- 1. A OUTPUT
- 2. A-INPUT
- 3. A+INPUT
- 4. GND
- 5 . B+INPUT
- 6. B-INPUT
- 7. B OUTPUT 8. V'

■ EQUIVALENT CIRCUIT (1/2 Shown)

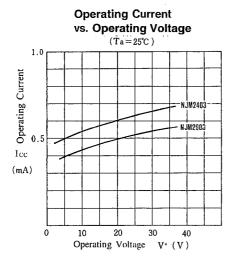
■ ABSOLUTE MAXIMUM RATINGS

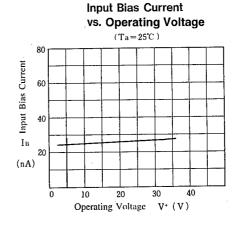
(Ta=25℃)

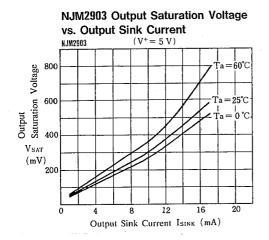
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+ ·	36(or ±18)	. V
Differential Input Voltage	V _{ID}	36	V
Input Voltage	Vin	-0.3~+36	V
Power Dissipation	Po	(DIP8) 500	mW
		(DMP8) 300	mW
		(SSOP8) 250	mW
		(SIP8) 800	mW
Operating Temperature Range	'Topr	-40~+85	$^{\circ}$
Storage Temperature Range	Tstg	-50~+125	$^{\circ}$

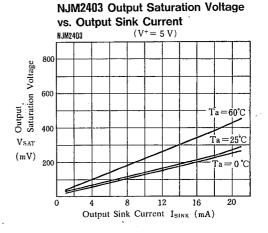

■ ELECTRICAL CHARACTERISTICS

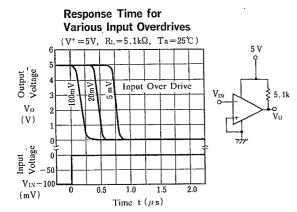
 $(V^{\dagger}=5V, Ta=25^{\circ}C)$

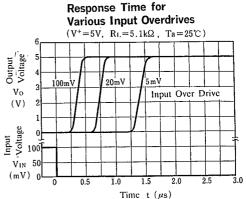

PARAMETER	SYMBOL TEST CONI		2903			2403		LINUTE	
		TEST CONDITION	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	$R_S = 0\Omega$, $V_O \cong 1.4V$	_		7	_	_	10	mV
Input Offset Current	l_{10}	•	_	 —	50			100	ηA
Input Bias Current	IB	•	_	30	250		40	500	пA
Input Common Mode Voltage Range	V_{1CM}		0~3.5	—		0~3.5			V
Large Signal Voltage Gain	Αv	$R_L = 15k\Omega$	—	106	<u> </u>	-	106	—	dB
Response Time	tR	R _L 5.1kΩ	_	1.5	—		1.5	—	μS
Output Sink Current	I _{SINK}	$V_{IN}^- = IV, V_{IN}^+ = 0V, V_0 = 1.5V$	6	_	_	20	_		mA
Output Saturation Voltage	VSAT	$V_{IN}^-=IV$, $V_{IN}^+=0Vm$ $I_{SINK}=3mA$	_	200	400		_	_	mV
Output Saturation Voltage	V_{SAT}	$V_{IN}^-=1V, V_{IN}^+=0V, I_{SINK}=15mA$	_	_			200	400	mV
Output Leakage Current	ILEAK	$V_{IN}^-=0V, V_{IN}^+=0V, V_0=5V$	_	_	1.0	_	_	1.0	μА
Operating Current	lcc		-	0.4	1.0	-	0.5	1.5	mA

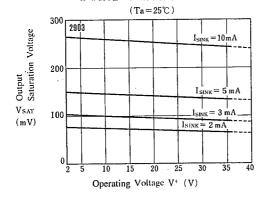

5


■ TYPICAL CHARACTERISTICS

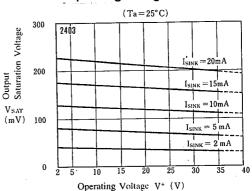


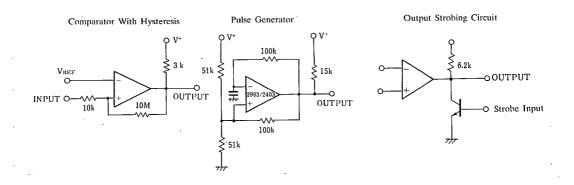






■ TYPICAL CHARACTERISTICS




NJM2903 Output Saturation Voltage vs. Operating Voltage

NJM2403 Output Saturation Voltage vs. Operating Voltage

■ TYPICAL APPLICATIONS

NJM2903/2403

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.