PRELIMINARY

NLT Technologies, Ltd.

TFT COLOR LCD MODULE

NL160120AC27-32B

54 cm (21.3 Type) UXGA LVDS Interface (2 port)

PRELIMINARY DATA SHEET =

DOD-PP-1313 (2nd edition)

This PRELIMINARY DATA SHEET is updated document from DOD-PP-1257(1).

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

INTRODUCTION

The Copyright to this document belongs to NLT Technologies, Ltd. (hereinafter called "NLT"). No part of this document will be used, reproduced or copied without prior written consent of NLT.

NLT does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NLT.

Some electronic parts/components would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NLT, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three quality grades: "Standard", "Special", and "Specific" of the highest grade of a quality assurance program at the choice of a customer. Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard quality grade is required to contact an NLT sales representative in advance.

The **Standard** quality grade applies to the products developed, designed and manufactured in accordance with the NLT standard quality assurance program, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses are, directly or indirectly, free of any damage to death, human bodily injury or other property, like general electronic devices.

Examples: Computers, office automation equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, industrial robots, etc.

The **Special** quality grade applies to the products developed, designed and manufactured in accordance with an NLT quality assurance program stricter than the standard one, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses might directly cause any damage to death, human bodily injury or other property, or such application under more severe condition than that defined in the Standard quality grade without such direct damage.

Examples: Control systems for transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, medical equipment not specifically designed for life support, safety equipment, etc.

The **Specific** quality grade applies to the products developed, designed and manufactured in accordance with the standards or quality assurance program designated by a customer who requires an extremely higher level of reliability and quality for such products.

Examples: Military systems, aircraft control equipment, aerospace equipment, nuclear reactor control systems, medical equipment/devices/systems for life support, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

CONTENTS

INTRODUCTION	2
	_
1. OUTLINE	4
1.1 STRUCTURE AND PRINCIPLE	
1.2 APPLICATION	
1.3 FEATURES	4
3. BLOCK DIAGRAM	
4. DETAILED SPECIFICATIONS	7
4.1 MECHANICAL SPECIFICATIONS.	7
4.2 ABSOLUTE MAXIMUM RATINGS	
4.3 ELECTRICAL CHARACTERISTICS	8
4.3.1 LCD panel signal processing board	8
4.3.1 LCD panel signal processing board	9
4.3.3 LED driver board current wave	9
4.3.4 Power supply voltage ripple	
4.3.5 Fuse	10
4.4 POWER SUPPLY VOLTAGE SEQUENCE	11
4.4.1 LCD panel signal processing board	II
4.4.2 LED driver board	11
4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	12
4.5.2 LED driver board	12
4.5.3 Positions of socket	
4.6 LUMINANCE CONTROL	
4.6.1 Luminance control methods	
4.6.2 Detail of BRTP timing	16
4.7 LVDS DATA INPUT MAP	17
4.7.1 Mode A	
4.7.2 Mode B	18
4.7.3 Mode C	19
4.8 DISPLAY COLORS AND INPUT DATA SIGNALS	20
4.9 INPUT SIGNAL TIMINGS	
4.9.1 Timing characteristics	21
4.9.2 Input signal timing chart	21
4.10 LVDS DATA TAXANSMISSION WETHOD 4.11 DISPLAY POSITIONS	
4.12 PIXEL ARRANGNMENT	23
4.13 OPTICS	24
4.13.1 Optical characteristics	24
4.13.2 Definition of contrast ratio	25
4.13.3 Definition of luminance uniformity	25
4.13.4 Definition of color uniformity	
4.13.5 Definition of response times	26
4.13.6 Definition of viewing angles	26
5. ESTIMATED LUMINANCE LIFETIME	
6. RELIABILITY TESTS	
7. PRECAUTIONS	6∠ 20
7.2 CAUTIONS	
7.2 CAUTIONS	
7.3.1 Handling of the product	
7.3.2 Environment.	
7.3.3 Characteristics	
7.3.4 Others	30
8. OUTLINE DRAWINGS	
8.1 FRONT VIEW	
8.2 REAR VIEW	32
DEVICION HICTORY	22
REVISION HISTORY	53

NL160120AC27-32B

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL160120AC27-32B is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.

The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Grayscale data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.

The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

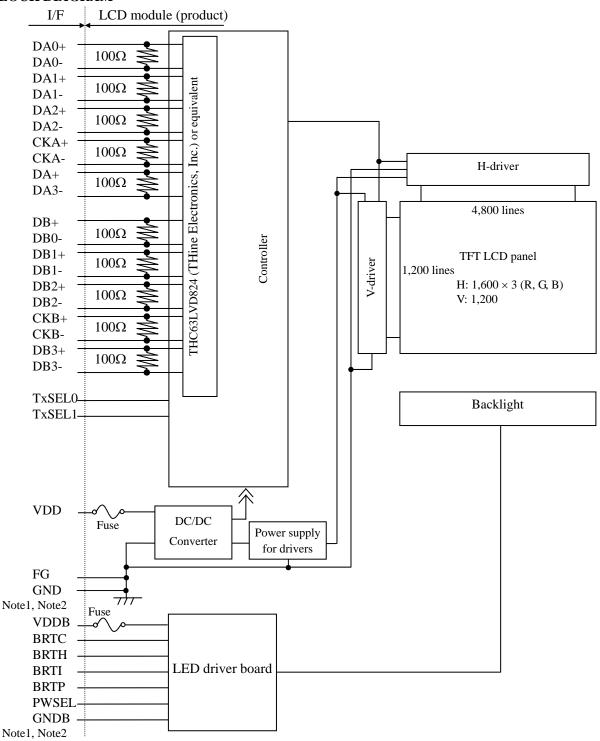
1.2 APPLICATION

• Color monitor system

1.3 FEATURES

- Ultra-wide viewing angle (Ultra-Advanced Super Fine TFT (UA-SFT))
- High luminance
- High contrast
- High resolution
- Low reflection
- Wide color gamut
- 256 gray scale in each R, G, B sub-pixel (8-bit), 16,777,216 colors
- LVDS interface
- Selectable LVDS data input map
- Small foot print
- Long life LED backlight type with an LED driver board

NL160120AC27-32B


2. GENERAL SPECIFICATIONS

Display area	432.0 (H) × 324.0 (V) mm			
Diagonal size of display	54 cm (21.3 inches)			
Drive system	a-Si TFT active matrix			
Display color	16,777,216 colors			
Pixel	$1,600 \text{ (H)} \times 1,200 \text{ (V)}$ pixels (1 pixel consists of 3 sub-pixels (RGB).)			
Pixel arrangement	RGB (Red dot, Green dot, Blue dot) vertical stripe			
Dot pitch	0.090 (H) × 0.270 (V) mm			
Pixel pitch	$0.270 \text{ (H)} \times 0.270 \text{ (V) mm}$			
Module size	$457.0 \text{ (W)} \times 350.0 \text{ (H)} \times 21.5 \text{ (D)} \text{ mm (typ.)}$			
Weight	(2,700) g (typ.)			
Contrast ratio	1200:1 (typ.)			
Viewing angle	At the contrast ratio ≥ 10:1 • Horizontal: Right side 88° (typ.), Left side 88° (typ.) • Vertical: Up side 88° (typ.), Down side 88° (typ.)			
Designed viewing direction	Viewing angle with optimum grayscale (γ≒ DICOM): Normal axis (perpendicular) Note1			
Polarizer surface	Antiglare			
Polarizer pencil-hardness	2H (min.) [by JIS K5600]			
Color gamut	At LCD panel center (72) % (typ.)[against NTSC color space]			
Response time	$Ton+Toff (10\% \longleftrightarrow 90\%)$ (40) ms (typ.)			
Luminance	At the maximum luminance 760 cd/m² (typ.)			
Signal system	2 ports LVDS interface (THC63LVD824A THine Electronics, Inc. or equivalent) [RGB 8-bit signals, Data enable signal (DE), Dot clock (CK)]			
Power supply voltage	LCD panel signal processing board: 12.0V LED driver board: 12.0V			
Backlight	LED backlight type with LED driver board			
Power consumption	At checkered flag pattern, the maximum luminance (57) W (typ.)			

Note1: When the product luminance is 450cd/m^2 , the gamma characteristic is designed to $\gamma = DICOM$.

☆

3. BLOCK DIAGRAM

Note1: Relations between GND (Signal ground), FG (Frame ground) and GNDB (LED driver board ground) in the LCD module are as follows.

,	
GND - FG	Connected
GND - GNDB	Not connected
FG - GNDB	Not connected

Note2: GND, FG and GNDB must be connected to customer equipment's ground, and it is recommended that these grounds be connected together in customer equipment.

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

Parameter	Specification	Unit	
Module size	$457.0 \pm 0.5 \text{ (W)} \times 350.0 \pm 0.5 \text{ (H)} \times 21.5 \text{ (typ., D)}$ 23.0 (max. D)	Note1, Note2	mm
Display area	432.0 (H) × 324.0 (V)	Note2	mm
Weight	(2,700) (typ.), (2,980) (max.)		

Note1: Excluding warpage of the cover for LED driver board.

Note2: See "8. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

	Parai		Symbol	Rating	Unit	Remarks	
Power supply	pply		LCD panel signal processing board		-0.3 to +14.0	V	Ta = 25°C
voltage	LED driver board			VDDB	-0.3 to +15.0	V	1a – 25 C
	LCD par		al processing board lote1	Vi	-0.3 to +3.45	V	VDD= 12.0V
			BRTI signal	VBI	-0.3 to +1.5	V	
Input voltage for signals	LED daisses	L	BRTP signal	VBP	-0.3 to +5.5	V	VDDD 12.0V
	LED driver	ooard	BRTC signal	VBC	-0.3 to +5.5	V	VDDB= 12.0V
			PWSEL signal	VBS	-0.3 to +5.5	V	
	Storage te	mperat	ure	Tst	-20 to +60	°C	-
0			Front surface	TopF	(0 to +60)	°C	Note2
Operating te	mperature		Rear surface	TopR	(0 to +60)	°C	Note3
					≤ 95	%	Ta ≤ 40°C
	Relative No	humidi te4	ty	RH	≤ 85	%	40°C < Ta ≤ 50°C
					≤ 70	%	50°C < Ta ≤ 55°C
Absolute humidity Note4				АН	≤ 73 Note5	g/m ³	Ta > 55°C
Operating altitude				-	≤ 4,850	m	0°C ≤ Ta ≤ 55°C
	Storage	e	-	≤ 13,600	m	-20°C ≤ Ta ≤ 60°C	

Note1: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, CKB+/-

Note2: Measured at LCD panel surface (including self-heat)

Note3: Measured at LCD module's rear shield surface (including self-heat)

Note4: No condensation

Note5: Water amount at Ta= 55°C and RH= 70%

NL160120AC27-32B

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD panel signal processing board

 $(Ta=25^{\circ}C)$

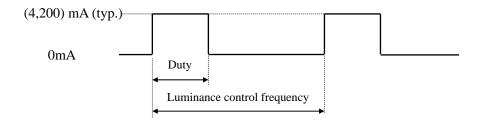
Parameter	Parameter			typ.	max.	Unit	Remarks	
Power supply voltage		VDD	10.8	12.0	13.2	V	-	
Power supply current	IDD	-	(500) Note1	(700) Note2	mA	at VDD= 12.0V		
Permissible ripple voltage		VRP	ı	-	100	mVp-p	for VDD	
Differential input threshold	High	VTH	-	-	+100	mV	at VCM= 1.2V Note3, Note4	
voltage	Low	VTL	-100	-	-	mV		
Input voltage swing		VI	0	-	2.4	V	Note4	
Terminating resistance		RT	-	100	-	Ω	-	

Note1: Checkered flag pattern (by EIAJ ED-2522)

Note2: Pattern for maximum current

Note3: Common mode voltage for LVDS driver

Note4: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, CKB+/-


NL160120AC27-32B

4.3.2 LED Driver board

 $(Ta=25^{\circ}C)$

]	Symbol	min.	typ.	max.	Unit	Remarks		
Power supply voltage			VDDB	(11.4)	12.0	(12.6)	V	-
Power supply current			IDDB	-	(4,200)	TBD	mA	VDDB= 12.0V, At the maximum luminance control
	BRTI signal		VBI	0	-	1.0	V	
	BRTP signal	High	VBPH	2.0	-	5.25	V	
	DKII signai	Low	VBPL	0	-	0.8	V	
Input voltage for signals	DDTC signal	High	VBCH	2.0	-	5.25	V	
101 orginal	BRTC signal	Low	VBCL	0	-	0.8	V	
	DWCEL sissal	High	VBSH	2.0	-	5.25	V	
	PWSEL signal	Low	VBSL	0	-	0.8	V	
	BRTI signal		IBI	TBD	-	TBD	μΑ	_
	BRTP signal	High	IBPH	-	-	TBD	μΑ	
	DKIF signal	Low	IBPL	TBD	-	1	μΑ	
Input current for signals	BRTC signal	High	IBCH	-	-	TBD	μΑ	
	DKIC Signal	Low	IBCL	TBD	-	1	μΑ	
	PWSEL signal	High		-	-	TBD	μΑ	
	1 WOEL Signal	Low	IPSL	TBD	-	-	μΑ	

4.3.3 LED driver board current wave

At the maximum luminance control: 100%

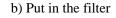
At the minimum luminance control: (1)% (At frequency: 325 Hz)

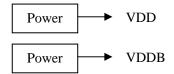
Luminance control frequency: (255)Hz (typ.)

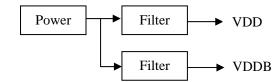
Note1: Luminance control frequency indicate the input pulse frequency, when select the external pulse control. See "**4.6.2 Detail of BRTP timing**".

Note2:The power supply lines (VDDB and GNDB) have large ripple voltage during luminance control. There is the possibility that the ripple voltage produces acoustic noise and signal wave noise in audio circuit and so on. Put a capacitor $(5,000 \text{ to } 6,000 \mu\text{F})$ between the power supply lines (VDDB and GNDB) to reduce the noise, if the noise occurred in the circuit..

4.3.4 Power supply voltage ripple

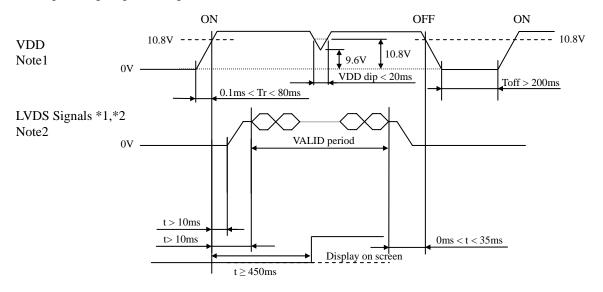

This product works, even if the ripple voltage levels are beyond the permissible values as following the table, but there might be noise on the display image.


Power suppl	y voltage	Ripple voltage Note1 (Measure at input terminal of power supply)	Unit
VDD	12.0V	≤ 100	mVp-p
VDDB	12.0V	≤ 200	mVp-p


Note1: The permissible ripple voltage includes spike noise.

Example of the power supply connection

a) Separate the power supply

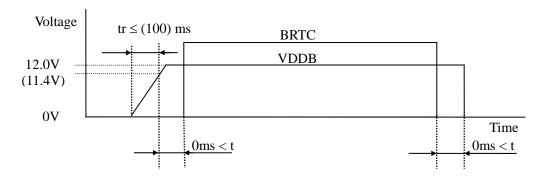

4.3.5 Fuse

Parameter		Fuse	Datina	Eusing sument	Remarks
Parameter	Туре	Supplier	Rating	Fusing current	Remarks
VDD	FCC16132AB	KAMAYA ELECTRIC	1.25A	2.5A, 5 seconds	
VDD	FCC10132AB	Co., Ltd.	32V	maximum	Note1
VDDB	CCF1N10	KOA Corporation	10A	20 A,	Note1
VDDB	CCFINIO	KOA Corporation	60 V	1 seconds maximum	

Note1: The power supply capacity should be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.

4.4 POWER SUPPLY VOLTAGE SEQUENCE

4.4.1 LCD panel signal processing board



- *1: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/- and CKB+/-
- *2: LVDS signals should be measured at the terminal of 100Ω resistance.
- Note1: If there is a voltage variation (voltage drop) at the rising edge of VCC below 10.8V, there is a possibility that a product does not work due to a protection circuit.
- Note2: LVDS signals must be set to Low or High-impedance, except the VALID period (See above sequence diagram), in order to avoid the circuitry damage.

 If some of signals are cut while this product is working, even if the signal input to it once again, it might not work normally. If a customer stops the display and function signals, VCC also must be shut down.

Note3: The backlight should be turned on within the valid period of LVDS signals, in order to avoid unstable data display.

4.4.2 LED driver board

- Note1: The backlight should be turned on within the valid period of LVDS signals, in order to avoid unstable data display.
- Note2: If tr is more than (100)ms, the backlight will be turned off by a protection circuit for LED driver board.
- Note3: When VDDB is 0V or BRTC is Low, PWSEL must be set to Low or Open.

4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

4.5.1 LCD panel signal processing board

CN1 Socket (LCD module side): DF19G-30P-1H (56) (Hirose Electric Co., Ltd. (HRS)) Adaptable plug: DF19-30S-1C (Hirose Electric Co., Ltd. (HRS))

Pin No.	Symbol	Signal		Rem	narks		
1	DA0-	Pixel data A0	Odd pixel data Inp	nt (I VDC 4:ff	arantial signal)	NT.	ote1
2	DA0+	Pixei data A0	Odd pixei data inp	ut (LVDS uiiit	erentiai signai)	INC	oter
3	DA1-	Pixel data A1	Odd pivol dot- I	(I V/DC 4:44	amontial signs 1)	NT.	oto 1
4	DA1+	Pixel data A1	Odd pixel data Inp	ut (LVDS aille	erennai signai)	NO	ote1
5	DA2-	Pixel data A2	Odd pixel data Inp	ut (I VDS diff	arantial signal)	N	ote1
6	DA2+	Fixel data A2	Odd pixei data ilip	ut (LVD3 uiit	erentiai signai)	INC	otei
7	GND	Ground	Signal ground			No	ote2
8	CKA-	Pixel clock	Odd pixel clock In	nut (LVDS dif	forential cional)	No	ote1
9	CKA+	1 IXEI CIOCK	Odd pixel clock iii	put (LVD3 uii	ierentiai signai)	110	Jie1
10	DA3-	Pixel data A3	Odd pixel data Inp	ut (LVD\$ diffe	arantial cional)	No	ote1
11	DA3+	1 IACI Gata AS	Odd pixel data hip	ut (LV DS UIII	cicinal signal)	110	J.C 1
12	DB0-	Pixel data B0	Even pivel data In	nut (LVDS diff	ferential signal)	No	ote1
13	DB0+	Tixei data bo	Even pixel data Input (LVDS differential signal) Note				oter
14	GND	Ground	Signal ground	Signal ground			
15	DB1-	Pixel data B1	Even pixel data Input (LVDS differential signal) Note1				ote 1
16	DB1+	Tixer data Di					oter
17	GND	Ground	Signal ground			No	ote2
18	DB2-	Pixel data B2	Even pixel data In	nut (LVDS diff	ferential signal)	No	ote1
19	DB2+	Tixer data D2	Even pixer data mj	put (LVD3 um	iciciitiai signai)	110	oter
20	CKB-	Pixel clock	Even pixel clock In	nnut (LVDS di	fferential cional	No.	ote1
21	CKB+	1 IXCI CIOCK	Even pixer clock in	iiput (Ev D5 ui	merentiai signai,	, 110	JtC1
22	DB3-	Pixel data B3	Even pixel data In	nut (LVDS diff	ferential signal)	No	ote1
23	DB3+	1 ixel data B3	Even pixer data m	put (EVDS um	iciciitiai signai)	110	JtC1
24	GND	Ground	Signal ground			No	ote2
					•		-
25	TxSEL0			TxSEL1	TxSEL0	Mode	
		Selection of LVDS		Open	Open	A	
		data input map	Note3, Note4	Open	Low	В	
26	TxSEL1		Ţ	Low	Open	С	
				Low	Low	A	
27	GND	Ground	Signal ground			No	ote2
28	VDD						
29	VDD	Power supply	12V			No	ote2
30	VDD						

Note1: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

Note2: All GND and VDD terminals should be used without any non-connected lines.

Note3: This terminal is pulled-up in the product.

Note4: See "4.7 LVDS DATA INPUT MAP".

NL160120AC27-32B

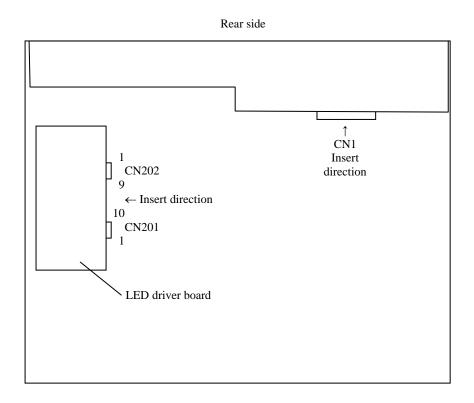
4.5.2 LED driver board

CN201 socket (LCD module side): DF3Z-10P-2H (2*) (HIROSE ELECTRIC Co,. Ltd.) Adaptable plug: DF3-10S-2C (HIROSE ELECTRIC Co,. Ltd.)

Pin No.	Symbol	Function	Description		
1	GNDB				
2	GNDB				
3	GNDB	LED driver board ground	Note1		
4	GNDB				
5	GNDB				
6	VDDB				
7	VDDB				
8	VDDB	Power supply	Note1		
9	VDDB				
10	VDDB				

Note1: All VDDB and GNDB terminals should be used without any non-connected lines.

CN202 socket (LCD module side): IL-Z-9PL-SMTYE (Japan Aviation Electronics Industry Limited (JAE))
Adaptable plug: IL-Z-9S-S125C3 (Japan Aviation Electronics Industry Limited (JAE))


Pin No.	Symbol	Function	Description
1	GNDB	LED driver board ground	Note1
2	GNDB	LED driver board ground	Note1
3	N.C.	-	Keep this pin Open.
4	BRTC	Backlight ON/OFF control signal	High or Open: Backlight ON Low: Backlight OFF
5	BRTH	Luminance control terminal	
6	BRTI	Lummance control terminal	Note2
7	BRTP	BRTP signal	
8	GNDB	LED driver board ground	Note1
9	PWSEL	Selection of luminance control signal method	Note2, Note3

Note1: All GNDB terminals should be used without any non-connected lines.

Note2: See "4.6.1 LUMINANCE CONTROL ".

Note3: When VDDB is 0V or BRTC is Low, PWSEL must be set to Low or Open.

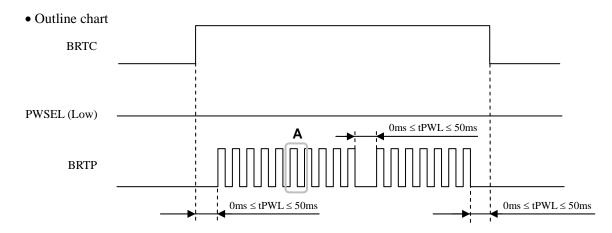
4.5.3 Positions of socket

4.6 LUMINANCE CONTROL

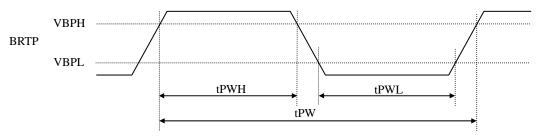
4.6.1 Luminance control methods

Method	Adjustment and luminance ratio	PWSEL terminal	BRTP terminal
Variable resistor control Note1 Voltage control Note1	Adjustment The variable resistor (R) for luminance control should be 10kΩ ±5%, 1/10W. Minimum point of the resistance is the minimum luminance and maximum point of the resistance is the maximum luminance. The resistor (R) must be connected between BRTH-BRTI terminals. Luminance ratio Note3 Resistance Luminance ratio 0 Ω 0% (Min. Luminance) 10 kΩ 100% (Max. Luminance) • Adjustment Voltage control method works, when BRTH terminal is 0V and VBI voltage is input between BRTI-BRTH terminals. This control method can carry out continuation adjustment of luminance. Luminance is the maximum when BRTI terminal is Open. • Luminance ratio Note3 BRTI Voltage (VBI) Luminance ratio 0V 0% (Min. Luminance) 1.0V 100% (Max. Luminance)	High or Open	Open
Pulse width modulation Note1 Note2 Note4	Adjustment Pulse width modulation (PWM) method works, when PWSEL terminal is Low and PWM signal (BRTP signal) is input into BRTP terminal. The luminance is controlled by duty ratio of BRTP signal. • Luminance ratio Note3 Duty ratio	Low	BRTP signal

Note1: In case of the variable resistor control method and the voltage control method, noises may appear on the display image depending on the input signals timing for LCD panel signal processing board.


Use PWM method, if interference noises appear on the display image!

Note2: The LED driver board will stop working, if the Low period of BRTP signal is more than 50ms while BRTC signal is High or Open. Then the backlight will not turn on anymore, even if BRTP signal is input again. This is not out of order. The LED driver board will start to work when power is supplied again.


Note3: These data are the target values. Note4: See "4.6.2 Detail of BRTP timing".

4.6.2 Detail of BRTP timing

(1) Timing diagrams

• Detail of A part

(2) Each parameter

Parameter	Symbol	min.	typ.	max.	Unit	Remarks
Luminance control frequency	FL	(185)	-	(1,000)	Hz	Note1, Note2
External PWM pulse width	tPWH	(30)	-	-	μs	Note1, Note3

Note1: Definition of parameters is as follows.

$$FL = \frac{1}{tPW} DL = \frac{tPWH}{tPW}$$

Note2: See the following formula for luminance control frequency.

Luminance control frequency = $1/\text{tv} \times (\text{n+0.25})$ [or (n + 0.75)]

$$n = 1, 2, 3 \cdot \cdot \cdot \cdot$$

tv: Vertical cycle (See "4.9.1 Timing characteristics".)

The interference noise of luminance control frequency and input signal frequency for LCD panel signal processing board may appear on a display. Set up luminance control frequency so that the interference noise does not appear!

Note3: See "4.6.1 Luminance control methods".

4.7 LVDS DATA INPUT MAP

4.7.1 Mode A

			Transmitter		
Input data Note1	Pin THC63	LVDF83A	Pin	THC63LVD823	CN1
RA2			53 R12	No	te2 Pin Symbol
$RA3 \rightarrow$			54 R13	TA1-	
RA4			57 R14	TA1+	→ 2 DA0+
RA5			58 R15 59 R16	TD 1	→ 3 DA1-
RA6			60 R17	TB1- TB1+	
			63 G12	1011	7 TDM
. <u>5</u> 0 GA3			64 G13	TC1-	→ 5 DA2-
$GA4 \rightarrow$			65 G14	TC1+	
\subseteq GA5 \rightarrow			66 G15		7 GND
$GA6 \rightarrow$			67 G16	TCLK1-	
$\frac{5}{p}$ GA7			68 G17	TCLK1+	→ 9 CKA+
$\frac{BA2}{BA2}$	4.0		73 B12	TD1	10 D A 2
$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$		1st	74 B13 75 B14	TD1- TD1+	
$\begin{array}{c c} & & \underline{BA4} & \rightarrow \\ \hline & & & \underline{BA5} & \rightarrow \end{array}$		181	75 B14	IDI+	→ 11 DA3+
BA6			77 B16		
$\overrightarrow{BA7} \rightarrow \overrightarrow{BA7}$			78 B17		
Note3 RSVD -	27 TC4		7 RSV	D	
Notes KSVD			8 RSV	D	
$\overline{\text{DE}}$ \rightarrow			9 DE		
RA0 ->			51 R10		
RA1 -			52 R11		
GA0	4.0		61 G10 62 G11		
$\begin{array}{c} GA1 \\ BA0 \end{array}$			69 B10		
BA1	4.0		70 B11		
Note3 RSVD -			-		
CLK			10 CLK		
RB2 —			81 R22		
RB3 ->			82 R23	TA2-	
RB4			83 R24	TA2+	
<u>RB5</u> → RB6 →			84 R25 85 R26	TB2-	14 GND → 15 DB1-
<u>RB6</u> → RB7 →			86 R27	TB2+	\rightarrow 15 DB1- \rightarrow 16 DB1+
$\overline{GB2} \rightarrow$			91 G22	1021	17 GND
GB3			92 G23	TC2-	
GB4	7 TB1		93 G24	TC2+	→ 19 DB2+
GB5 —			94 G25		
GB6			95 G26	TCLK2-	
GB7			96 G27	TCLK2+	→ 21 CKB+
BB2 → BB3 →			99 B22 100 B23	TD2-	→ 22 DB3-
BB2		2nd	1 B24	TD2+	\rightarrow 22 DB3- \rightarrow 23 DB3+
BB5	22 TC1		2 B25	1321	24 GND
BB6 →	23 TC2		5 B26		25 TxSEL0
	24 TC3		6 B27		26 TxSEL1
Note3 RSVD -			<u>-</u>		27 GND
Note3 RSVD -					28 VDD
Note3 RSVD → RB0 →			- 79 R20		29 VDD 30 VDD
RB0 → RB1 →	2 TD1		80 R21		טעץ וויכ
GB0 -			89 G20		
GB1 -			90 G21		
BB0	16 TD4		97 B20		
BB1 -			98 B21		
Note3 RSVD -			-		
CLK -	31 CLKIN		-		

4.7.2 Mode B

			Tra	ansmitter				
Input data N	ote1	Pin	DS	90CF383, 0	C385			CN1
RA			TXIN0		No	te2	Pin	Symbol
	$A6 \rightarrow$		TXIN1		TA1-	\rightarrow		DA0-
	$A5 \rightarrow$		TXIN2		TA1+	\rightarrow	2	DA0+
	$A4 \rightarrow$		TXIN3		TD 1		2	DA1
	$A3 \rightarrow$		TXIN4 TXIN6		TB1-	\rightarrow		DA1-
	$A2 \rightarrow A7 \rightarrow$		TXIN6		TB1+	\rightarrow	4	DA1+
l ag	$A7 \rightarrow A6 \rightarrow$		TXIN7		TC1-	\rightarrow	5	DA2-
.is G/	$A5 \rightarrow$	7	TXIN9		TC1+	\rightarrow		DA2+
	$A4 \rightarrow$		TXIN12		101.			GND
Ju G	A3 →	12	TXIN13		TCLK1-	\rightarrow		CKA-
S G	$A2 \rightarrow$	14	TXIN14		TCLK1+	\rightarrow	9	CKA+
BA	A7 →	15	TXIN15					
	$A6 \rightarrow$	19	TXIN18		TD1-	\rightarrow		DA3-
	$A5 \rightarrow$		TXIN19	1st	TD1+	\rightarrow	11	DA3+
E BA	$A4 \rightarrow$		TXIN20					
$\frac{1}{8}$	$A3 \rightarrow$		TXIN21 TXIN22					
pp Note3 RS	$\begin{array}{ccc} A2 & \rightarrow \\ SVD & \rightarrow \end{array}$	27	TXIN22 TXIN24					
O Note3 RS			TXIN24 TXIN25					
DI			TXIN26					
RA			TXIN27					
	A0 →	2	TXIN5					
G		8	TXIN10					
G	$A0 \rightarrow$	10	TXIN11					
BA	$A1 \rightarrow$	16	TXIN16					
	$A0 \rightarrow$		TXIN17					
Note3 RS		25	TXIN23					
CI		31	CLKIN					
RI			TXIN0		т. 2		12	DDO
RI	$\begin{array}{ccc} B6 & \rightarrow \\ B5 & \rightarrow \end{array}$		TXIN1 TXIN2		TA2- TA2+	\rightarrow \rightarrow		DB0- DB0+
RI			TXIN2		1727	\rightarrow		GND
RI			TXIN4		TB2-	\rightarrow		DB1-
RI		3			TB2+	$\stackrel{'}{ ightarrow}$		DB1+
	B7 →		TXIN7					GND
	B6 →		TXIN8		TC2-	\rightarrow		DB2-
GI	B5 →	7	TXIN9		TC2+	\rightarrow		DB2+
	B4 →	11	TXIN12					
ata GI	B3 →		TXIN13		TCLK2-			CKB-
P GI	B2 →		TXIN14		TCLK2+	\rightarrow	21	CKB+
Even pixel data 图图图图图图图图图图图图图图图图图图图图图图图图图图图图图图图图图图图			TXIN15		TD2		22	DD2
ig Bi	$\begin{array}{c} B6 \\ \hline B5 \\ \rightarrow \end{array}$		TXIN18 TXIN19	2nd	TD2- TD2+	\rightarrow		DB3-
la de la	$\begin{array}{ccc} B5 & \rightarrow \\ B4 & \rightarrow \end{array}$		TXIN19	ZIIU	1102+	\rightarrow		DB3+ GND
H H	B3 →		TXIN20					TxSEL0
	$B2 \rightarrow$		TXIN22					TxSEL1
Note3 RS			TXIN24					GND
Note3 RS			TXIN25					VDD
Note3 RS		30	TXIN26				29	VDD
RI	B1 →		TXIN27				30	VDD
	B0 →		TXIN5					
GI			TXIN10					
	B0 →		TXIN11					
BI			TXIN16					
	$B0 \rightarrow$		TXIN17					
Note3 RS			TXIN23 CLKIN					
<u> </u>	$LK \longrightarrow$	31	CLIMIN			ı		

4.7.3 Mode C

					ansmitter				
Input data	Note1		Pin		90CF383, C				CN1
		\rightarrow		TXIN0			ote2	Pin	Symbol
	RA1	\rightarrow		TXIN1		TA1-	\rightarrow		DA0-
	RA2	\rightarrow		TXIN2		TA1+	\rightarrow	2	DA0+
	RA3	\rightarrow		TXIN3					
	RA4	\rightarrow		TXIN4			\rightarrow		DA1-
	RA5	\rightarrow		TXIN6		TB1+	\rightarrow	4	DA1+
	GA0	\rightarrow		TXIN7					
al	GA1	\rightarrow		TXIN8		TC1-	\rightarrow		DA2-
gn	GA2	\rightarrow		TXIN9		TC1+	\rightarrow		DA2+
Si	GA3	\rightarrow		TXIN12		mor III			GND
ro]	GA4	\rightarrow		TXIN13		TCLK1-			CKA-
nt	GA5	\rightarrow		TXIN14		TCLK1+	\rightarrow	9	CKA+
သ	BA0	\rightarrow		TXIN15		TID 1		1.0	D.1.2
pu	BA1	\rightarrow		TXIN18	4 .	TD1-	\rightarrow		DA3-
a a	BA2	\rightarrow		TXIN19	1st	TD1+	\rightarrow	11	DA3+
lata	BA3	\rightarrow		TXIN20					
] c	BA4	\rightarrow		TXIN21					
I X Moto?	BA5 RSVD	\rightarrow		TXIN22 TXIN24					
	RSVD	\rightarrow \rightarrow		TXIN24 TXIN25					
do Motes	DE	\rightarrow		TXIN25					
0	RA6	\rightarrow		TXIN27					
	RA7	$\stackrel{'}{\rightarrow}$		TXIN5					
	GA6	$\stackrel{'}{\rightarrow}$		TXIN10					
	GA7	$\stackrel{'}{\rightarrow}$		TXIN11					
	BA6	$\overset{'}{ ightarrow}$		TXIN16					
	BA7	\rightarrow		TXIN17					
Note3	RSVD	\rightarrow	25	TXIN23					
	CLK	\rightarrow	31	CLKIN					
	RB0	\rightarrow	51	TXIN0					
	RB1	\rightarrow		TXIN1		TA2-	\rightarrow	12	DB0-
	RB2	\rightarrow		TXIN2		TA2+	\rightarrow		DB0+
	RB3	\rightarrow		TXIN3					GND
	RB4	\rightarrow		TXIN4		TB2-	\rightarrow		DB1-
	RB5	\rightarrow		TXIN6		TB2+	\rightarrow		DB1+
	GB0	\rightarrow		TXIN7		TEGO.			GND
	GB1	\rightarrow		TXIN8		TC2-	\rightarrow		DB2-
	GB2	\rightarrow		TXIN9 TXIN12		TC2+	\rightarrow	19	DB2+
	GB3	\rightarrow		TXIN12		TCL V2		20	CVD
	GB4 GB5	\rightarrow \rightarrow		TXIN13		TCLK2- TCLK2+		21	CKB- CKB+
ata	BB0	\rightarrow		TXIN14		I CLIXZT	\rightarrow	۷1	CKD
p	BB1	\rightarrow		TXIN13		TD2-	\rightarrow	22	DB3-
_ xel	BB2	\rightarrow		TXIN19	2nd	TD2+	\rightarrow		DB3+
pi	BB3	$\stackrel{'}{\rightarrow}$		TXIN20		-22	ĺ		GND
en	BB4	$\stackrel{'}{ ightarrow}$		TXIN21					TxSEL0
Even pixel data	BB5	$\overset{'}{ ightarrow}$		TXIN22				_	TxSEL1
	RSVD	\rightarrow		TXIN24					GND
Note3	RSVD	\rightarrow	28	TXIN25				28	VDD
Note3	RSVD	\rightarrow		TXIN26					VDD
1		\rightarrow		TXIN27				30	VDD
1	RB7	\rightarrow		TXIN5					·
	GB6	\rightarrow		TXIN10					
1	GB7	\rightarrow		TXIN11					
1	BB6	\rightarrow		TXIN16					
37 . 3		\rightarrow		TXIN17					
Note3	RSVD	\rightarrow		TXIN23					
	CLK	\rightarrow	31	CLKIN					

NL160120AC27-32B

Note1: LSB (Least Significant Bit) – RA0, GA0, BA0, RB0, GB0, BB0 MSB (Most Significant Bit) – RA7, GA7, BA7, RB7, GB7, BB7

Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel

signal processing board and LVDS transmitter.

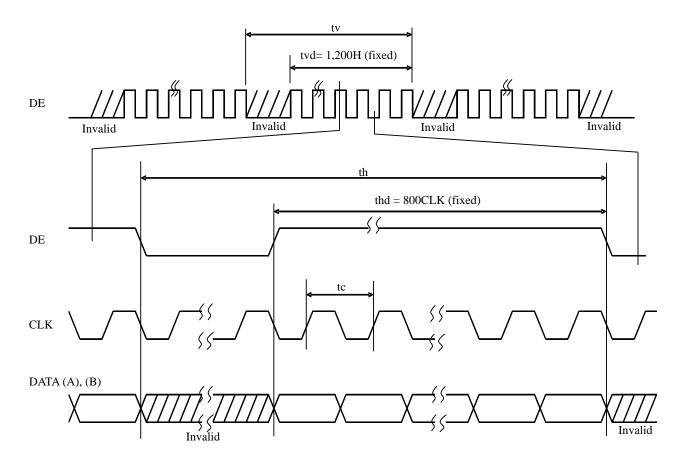
Note3: Input signal RSVD is not used inside the product, but do not keep pin open to avoid noise

problem.

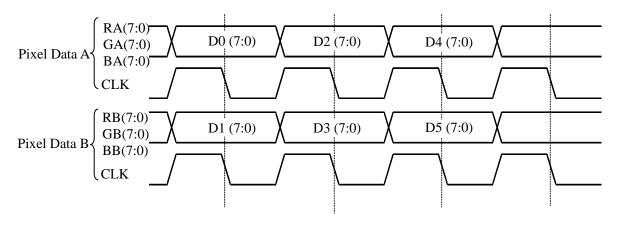
4.8 DISPLAY COLORS AND INPUT DATA SIGNALS

This product can display in equivalent to 16,777,216 colors in 256 gray scales in each RGB sub-pixel. Also the relation between display colors and input data signals is as the following table.

										Data s	ignal	(0: I	Low l	evel,	1: H	igh le	evel)								
Displ	ay colors	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	GA7	GA6	GA5	GA4	GA3	GA2	GA1	GA0	BA7	BA	BA5	BA4	BA3	BA2	BA1	BA0
		RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	GB7	GB6	GB5	GB4	GB3	GB2	GB1	GB0	BB7	BB6	BB5	BB4	BB3	BB2	BB1	BB0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
ors	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Basic Colors	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
ısic	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
B	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4)		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
cale	dark	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ay s	<u> </u>					:								:								:			
Red gray scale	↓	_				:								:								:			
Re	bright	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	l	l	1	l	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ıle		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
SCS /	dark ⋆	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green gray scale	↑																								
een		0	0	Λ	Λ	. 0	0	0	0	1	1	1	1	. 1	1	Λ	1	0	0	0	0	. 0	0	0	0
Ğ	bright	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0 1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Diack	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
ale	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
sc.	dark ↑		U	U	U		U	U	U	U	U	U	U		U	U	U		U	U	U		U	1	U
gra						•								•								•			
Blue gray scale	bright	0	0	0	0	. 0	0	0	0	0	0	0	0	. 0	0	0	0	1	1	1	1	1	1	0	1
Щ	ongiit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	2.40	Ü	9	9	,	,	,	,	Ŭ	Ü	,	J	,	,	,	,	~		_	_	_	_	_		_


4.9 INPUT SIGNAL TIMINGS

4.9.1 Timing characteristics


	Parameter	Symbol	min.	typ.	max.	Unit	Remarks
	Frequency	1/ tc	60.0	64.5	65.0	MHz	LVDS transmitter
CLK	Pulse width	tc	15.38 15.5		1	ns	input
CLK	Duty	1	See the data	sheet of LV	-		
	Rise, fall	1	transmitter.			ns	-
	Cycle	th	13.1	13.3	19.2	μs	Note1
Horizontal	Cycle	ui	848	860	1,156	CLK	Note1
	Display period	thd		800	CLK	-	
	Cycle	1/tv	59	60	61	Hz	
Vertical	Cycle	tv	1,206	1,250	1	Н	-
	Display period	tvd		1,200		Н	-
D.F.	Setup time	ı	See the data sheet of LVDS		ns		
DE, DATA	Hold time		See the data transmitter.	sheet of LV	DS	ns	-
<i>D</i> /11/1	Rise, fall	-	transmitter.			ns	

Note1: During operation, fluctuation of horizontal cycle should be within ± 1 CLK.

4.9.2 Input signal timing chart

4.10 LVDS DATA TARANSMISSION METHOD

4.11 DISPLAY POSITIONS

Odd pixel: RA= Red data

GA= Green data

Even pixel: RB= Red data

GB= Green data BB= Blue data

BA= Blue data

D(2, 1)

D (1, 1) D (2, 1)

RA GA BA RB GB BB

D(1, 1)	D(2, 1)	•••	D(X, 1)	•••	D(1599, 1)	D(1600, 1)
D(1, 2)	D(2, 2)	•••	D(X, 2)	• • •	D(1599, 2)	D(1600, 2)
•	•	•	•	•	•	•
•	•	• • •	•	• • •	•	• • •
•	•	•	•	•	•	•
D(1, Y)	D(2, Y)	• • •	D(X,Y)	• • •	D(1599, Y)	D(1600, Y)
•	•	•	•	•	•	•
•	•	• • •	•	• • •	•	•
•	•	•	•	•	•	•
D(1, 1199)	D(2, 1199)	•••	D(X, 1199)	•••	D(1599, 1199)	D(1600, 1199)
D(1, 1200)	D(2, 1200)	•••	D(X, 1200)	• • •	D(1599, 1200)	D(1600, 1200)

NL160120AC27-32B

4.12 PIXEL ARRANGNMENT

	1	2		1,600
1	R G B	R G B		R G B
	• • •	• • •	• • • • • •	• • •
1,200	R G B	R G B		R G B

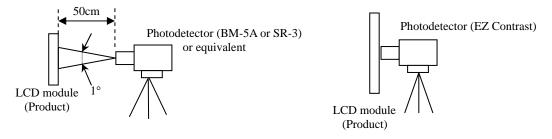
NL160120AC27-32B

4.13 OPTICS

4.13.1 Optical characteristics

(Note1, Note2)

Paramete	r	Condition	Symbol	min.	typ.	max.	Unit	Measuring instrument	Remarks
Luminano	e	White at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	L	TBD	900	-	cd/m ²	BM-5A or SR-3	Note3
Contrast ra	tio	White/Black at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	CR	TBD	1,400	-	-	BM-5A or SR-3	Note3 Note5
Luminance unit	formity	255/255 gray scale $\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$	LU1023	(80)	ı	-	%	BM-5A or SR-3	Note4 Note6
	White	x coordinate	Wx	(0.269)	0.299	(0.329)			
	wille	y coordinate	Wy	(0.285)	0.315	(0.345)	-		
	Red	x coordinate	Rx	-	(0.65)	-	-		
Chromaticity	Reu	y coordinate	Ry	1	(0.33)	-	-	SR-3	Note3
Cinomaticity	Green	x coordinate	Gx	-	(0.29)	-	-	3K-3	Note8
	Green	y coordinate	Gy	•	(0.60)	-	-		
	Blue	x coordinate	Bx	-	(0.15)	-	-		
	Blue	y coordinate	By	-	(0.07)	-	-		
Color gam	ut	θ R= 0°, θ L= 0°, θ U= 0°, θ D= 0° at center, against NTSC color space	С	(65)	(72)	-	%	SR-3	Note3
Color unifor	mity	204/255 gray scale $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	Δu'v'	1	-	0.01	-	SR-3	Note4 Note7
Response ti	me	Black to White	Ton	-	(20)	(30)	ms	BM-5A	Note3
Response ti		White to Black	Toff	ı	(20)	(30)	ms	DM-3A	Note9
	Right	θU= 0°, θD= 0°, CR≥ 10	θR	70	88	-	0		
Viewing angle	Left	θU= 0°, θD= 0°, CR≥ 10	θL	70	88	-	0	BM-5A or	Note3
, towing ungle	Up	$\theta R=0^{\circ}, \theta L=0^{\circ}, CR \ge 10$	θU	70	88	-	0	EZ Contrast	Note10
	Down	θ R= 0°, θ L= 0°, CR \geq 10	θD	70	88	-	0		


Note1: These are initial characteristics.

Note2: Measurement conditions are as follows.

Ta = 25°C, VDD = 12.0V, VDDB = 12.0V, PWM: Duty 100%, Display mode: UXGA,

Horizontal cycle = 1/75.19 kHz, Vertical cycle = 1/60.0Hz

Optical characteristics are measured after 20 minutes from working the product, in the dark room. Also measurement methods are as follows.

Note3: Product surface temperature at the maximum luminance control: TopF = 32°C

Note4: Product surface temperature at 450cd/m^2 luminance control: TopF = 30° C

Temperature difference in display area: ΔTBD°C

NL160120AC27-32B

Note5: See "4.13.2 Definition of contrast ratio".

Note6: See "4.13.3 Definition of luminance uniformity".

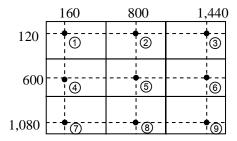
Note7: See "4.13.4 Definition of color uniformity".

Note8: These coordinates are found on CIE 1931 chromaticity diagram.

Note9: See "4.13.5 Definition of response times".

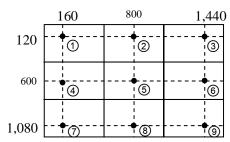
Note10: See "4.13. Definition of viewing angles".

4.13.2 Definition of contrast ratio


The contrast ratio is calculated by using the following formula.

4.13.3 Definition of luminance uniformity

The luminance uniformity is calculated by using following formula.

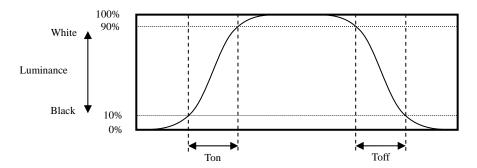

$$Luminance \ uniformity \ (LU) = \frac{Minimum \ luminance \ from \ \textcircled{1} \ to \ \textcircled{5}}{Maximum \ luminance \ from \ \textcircled{1} \ to \ \textcircled{5}}$$

The luminance is measured at near the 9 points shown below.

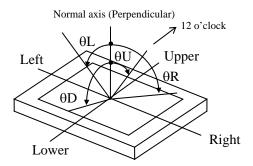
4.13.4 Definition of color uniformity

The color (u', v') is measured at near the 9 points shown below.

The color uniformity in each measuring point is calculated by using the following formula.


Color uniformity(
$$\Delta u'v'$$
)= $\sqrt{(u'_x - u'_y)^2 + (v'_x - v'_y)^2}$

u'x, v'x: u', v' value at measuring point x.


u'y, v'y: u', v' value at measuring point y.

4.13.5 Definition of response times

Response time is measured at the time when the luminance changes from "black" to "white", or "white" to "black" on the same screen point, by photo-detector. Ton is the time when the luminance changes from 10% up to 90%. Also Toff is the time when the luminance changes from 90% down to 10% (See the following diagram.).

4.13.6 Definition of viewing angles

5. ESTIMATED LUMINANCE LIFETIME

The luminance lifetime is the time from initial luminance to half-luminance.

This lifetime is the estimated value, and is not guarantee value.

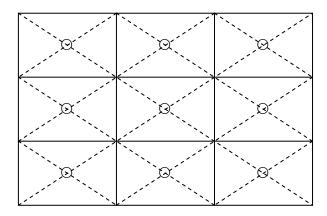
	Condition	Estimated luminance lifetime (Life time expectancy) Note1, Note2, Note3	Unit
I ED alamantary substance	25°C (Ambient temperature of the product) Continuous operation, PWM: Duty 100%	70,000	h
LED elementary substance	60°C (Surface temperature at screen) Continuous operation, PWM: Duty 100%	TBD	п

Note1: Life time expectancy is mean time to half-luminance.

Note2: Estimated luminance lifetime is not the value for an LCD module but the value for LED elementary substance.

Note3: By ambient temperature, the lifetime changes particularly. Especially, in case the product works under high temperature environment, the lifetime becomes short.

NL160120AC27-32B


6. RELIABILITY TESTS

Tes	t item	Condition	Judgment Note1
	ure and humidity eration)	① 60 ± 2°C, RH = 60%, 500hours ② Display data is white. Note2	
	t cycle eration)	① 0±3°C 1hour 60±3°C 1hour 2 50cycles, 4hours/cycle 3 Display data is white. Note2	No display malfunctions
	nal shock operation)	 ① -20 ± 3°C 30minutes 60 ± 3°C 30minutes ② 100cycles, 1hour/cycle ③ Temperature transition time is within 5 minutes. 	
	oration operation)	 5 to 100Hz, 11.76m/s² 1 minute/cycle X, Y, Z directions 10 times each directions 	No display malfunctions No physical damages
	nical shock operation)	 ① 294m/s², 11ms ② X, Y, Z directions ③ 3 times each directions 	
	ESD eration)	 150pF, 150Ω, ±10kV 9 places on a panel surface Note3 10 times each places at 1 sec interval 	No display malfunctions
_	Oust eration)	No display manuncuons	
Low pressure	Non-operation	① 15 kPa (Equivalent to altitude 13,600m) ② -20°C±3°C 24 hours ③ +60°C±3°C 24 hours	No display malfunctions
Low pressure	Operation	 ① 53.3 kPa (Equivalent to altitude 4,850m) ② 0°C±3°C 24 hours ③ +60°C±3°C 24 hours Note2 	140 dispiay manuncuons

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.

Note2: Luminance: 450cd/m² at luminance control.

Note2: Luminance: 450cd/m² at luminance control. Note3: See the following figure for discharge points

7. PRECAUTIONS

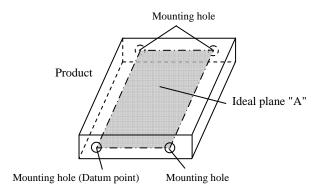
7.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. **Be sure to read "7.2 CAUTIONS" and "7.3 ATTENTIONS"!**

This sign has the meaning that a customer will be injured or the product will sustain damage if the customer practices wrong operations.

This sign has the meaning that a customer will be injured if the customer practices wrong operations.

7.2 CAUTIONS


* Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: Equal to or no greater than 294m/s^2 and equal to or no greater than 11 ms, Pressure: Equal to or no greater than 19.6 N ($\phi 16 \text{mm}$ jig))

7.3.1 Handling of the product

- ① Take hold of both ends without touching the circuit board when the product (LCD module) is picked up from inner packing box to avoid broken down or misadjustment, because of stress to mounting parts on the circuit board.
- ② Do not hook nor pull cables such as lamp cable, and so on, in order to avoid any damage.
- 3 When the product is put on the table temporarily, display surface must be placed downward.
- When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- ⑤ The torque for product mounting screws must never exceed 0.735N·m. Higher torque might result in distortion of the bezel. And the length of product mounting screws must be ≤ 5.0 mm.

⑥ The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area). Bends or twist described above and undue stress to any portion may cause display mura. Recommended installing method: Ideal plane "A" is defined by one mounting hole (datum point) and other mounting holes. The ideal plane "A" should be the same plane within ±0.3 mm.

- ② Do not press or rub on the sensitive product surface. When cleaning the product surface, wipe it with a soft dry cloth.
- Do not push or pull the interface connectors while the product is working.
- When handling the product, use of an original protection sheet on the product surface (polarizer) is recommended for protection of product surface. Adhesive type protection sheet may change color or characteristics of the polarizer.
- Wusually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal by any chance, please wash it away with soap and water.

7.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurred by temperature difference, the product packing box must be opened after enough time being left under the environment of an unpacking room. Evaluate the storage time sufficiently because dew condensation is affected by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with the original packing state after a customer receives the package)
- 3 Do not operate in high magnetic field. If not, circuit boards may be broken.
- 4 This product is not designed as radiation hardened.

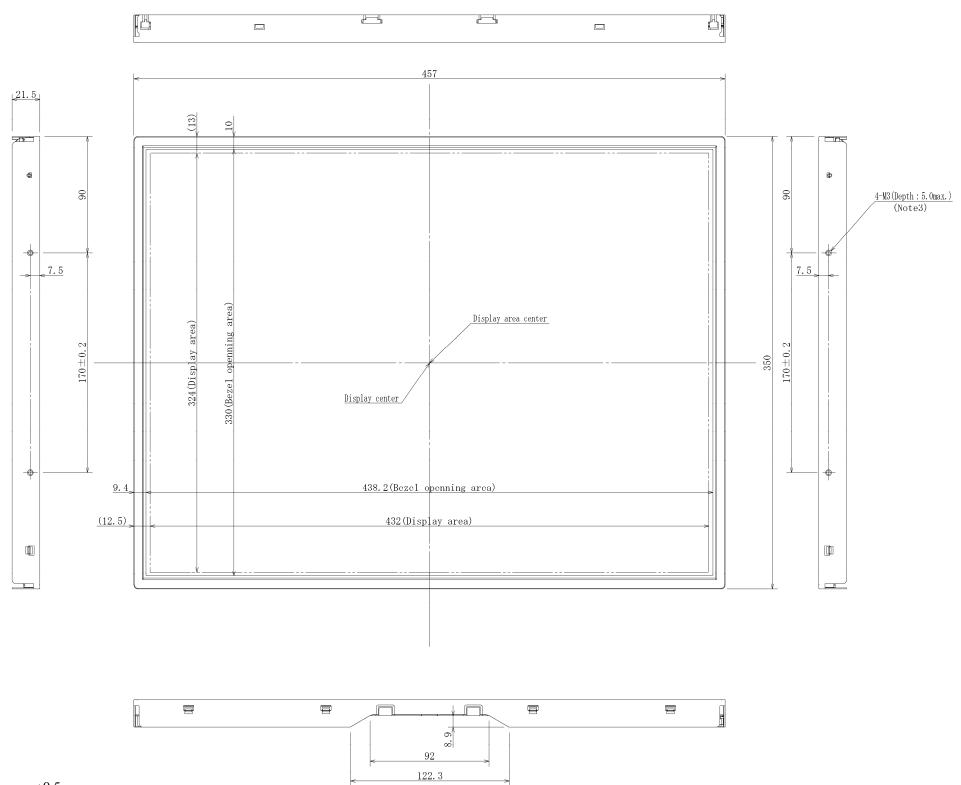
NL160120AC27-32B

7.3.3 Characteristics

The following items are neither defects nor failures.

- ① Response time, luminance and color may be changed by ambient temperature.
- ② Display mura, flickering, vertical streams or tiny spots may be observed depending on display patterns.
- ③ Do not display the fixed pattern for a long time because it may cause image sticking. Use a screen saver, if the fixed pattern is displayed on the screen.
- 4 The display color may be changed depending on viewing angle because of the use of condenser sheet in the backlight.
- ⑤ Optical characteristics may be changed depending on input signal timings.

7.3.4 Others


- ① All GND, GNDB, VDD and VDDB terminals should be used without any non-connected lines.
- ② Do not disassemble a product or adjust variable resistors.
- 3 Pack the product with the original shipping package, in order to avoid any damages during transportation, when returning the product to NLT for repairing and so on.
- 4 The LCD module by itself or integrated into end product should be packed and transported with display in the vertical position. Otherwise the display characteristics may be degraded.

☆

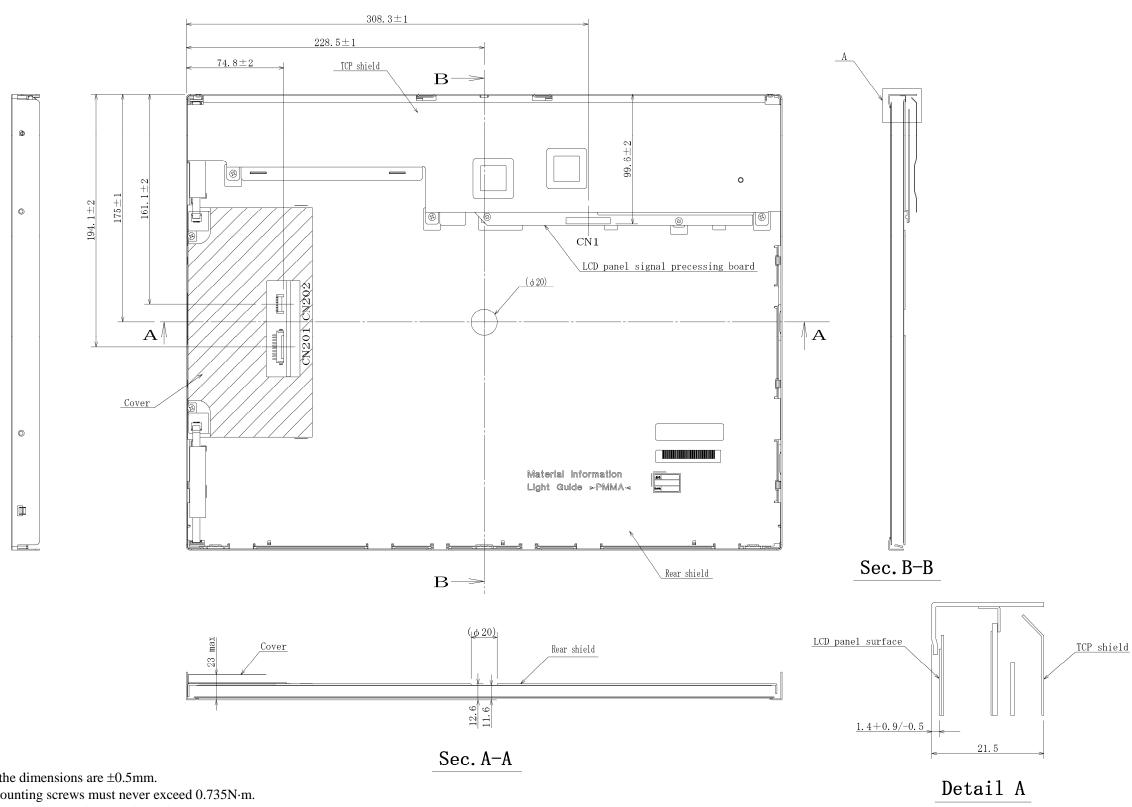
NLT Technologies, Ltd. NL160120AC27-32B

8. OUTLINE DRAWINGS

8.1 FRONT VIEW

Note1: Not shown tolerances of the dimensions are ± 0.5 mm.

Note2: The torque for product mounting screws must never exceed 0.735N·m.


Note3: The length of product mounting screws from surface of plate must be ≤ 5.0 mm.

Note4: The values in parentheses are for reference.

Unit: mm

NLT Technologies, Ltd. NL160120AC27-32B

8.2 REAR VIEW

Note1: Not shown tolerances of the dimensions are ± 0.5 mm.

Note2: The torque for product mounting screws must never exceed 0.735N·m.

Note3: The length of product mounting screws from surface of plate must be ≤ 5.0 mm.

Note4: The values in parentheses are for reference.

Unit: mm

NL160120AC27-32B

REVISION HISTORY

The inside of latest specifications is revised to the clerical error and the major improvement of previous edition. Only a changed part such as functions, characteristic value and so on that may affect a design of

customers, are described especially below.						
Edition	Document number	Prepared date	Revision contents and signature			
1st	DOD-PP-	Aug. 5,	Revision contents			
edition	1257	2011	New issue			
			Writer			
			Approved by	Checked by	Prepared by	
			T. OGAWA		T. OGAWA	
2nd edition	DOD-PP- 1313	Dec. 16, 2011	Revision contents			
	Preliminary data sheet DOD-PP-1257(1) → Data sheet DOD				eet DOD-PP-1313(2)	
			P5 GENERAL SPECIFICATIONS- Signal system • LVDS interface: THC63LVD824 → THC63LVD824A P7 DETAILED SPECIFICATIONS- ABSOLUTE MAXIMUM RATINGS • Power supply voltage- LED driver board- VDDB: -0.3 to +27.0 → -0.3 to +15.0 P15 LUMINANCE CONTROL- Luminance control methods • Note4: See "4.6.3 Detail of BRTP timing". → "4.6.2 Detail of BRTP timing". P16 LUMINANCE CONTROL- Detail of BRTP timing • Each parameter- Unit: μm → μs P30 ATTENTIONS- Characteristics			
			Optical characteristics cold cathode fluorescent lamps. (elimination) Signature of writer			
			Approved by	Checked by	Prepared by	
			T. Ogawa		M. Jonegard	
			T. OGAWA		M. HASEGAWA	
		<u> </u>				