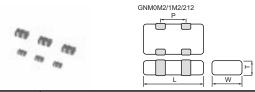
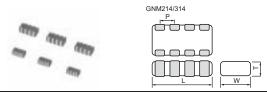
Chip Monolithic Ceramic Capacitors


Capacitor Array GNM Series

■ Features


- 1. High density mounting due to mounting space saving
- 2. Mounting cost saving

■ Applications

General electronic equipment

Part Number	Dimensions (mm)						
Part Number	L	W	Т	Р			
GNM0M2	0.9 ±0.05	0.6 ±0.05	0.45 ±0.05	0.45 ±0.05			
		1.0 ±0.15	0.5 +0.05/-0.10				
GNM1M2	1.37 ±0.15		0.6 ±0.1	0.64 ±0.05			
			0.8 +0/-0.15				
GNM212	2.0 +0.15	1.25 +0.15	0.6 ±0.1	1.0 ±0.1			
GINIVIZIZ	2.0 ±0.15	1.25 ±0.15	0.85 ±0.1				

Part Number	Dimensions (mm)						
rait Nullibei	L	W	Т	Р			
			0.5 +0.05/-0.1				
GNM214	2.0 ±0.15	1.25 ±0.15	0.6 ±0.1	0.5 ± 0.05			
			0.85 ±0.1				
			0.8 ±0.1				
GNM314	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.8 +0.1			
GIVIVIS 14	3.2 ±0.13	5.2 ±0.15 1.0 ±0.15	1.0 ±0.1	0.0 ±0.1			
			1.15 ±0.1				

Capacitance Table

Temperature Compensating Type COG (5C) Characteristics

0.6	Γ Dimensi	ion [mm]			
	LxW [mm]	1.37x1.0 (1M) <0504>	2.0x1.25 (21) <0805>		(1.6 1) 06>
Number of	Elements	2(2)		4(4)	
Rated \	/oltage [Vdc]	50 (1H)	50 (1H)	100 (2A)	50 (1H)
10pl	F(100)	0.6	0.6	0.8	0.8
15pl	F(150)	0.6	0.6	0.8	0.8
22pl	F(220)	0.6	0.6	0.8	0.8
33pl	- (330)	0.6	0.6	0.8	0.8
47pl	F(470)	0.6	0.6	0.8	0.8
68pl	- (680)	0.6	0.6	0.8	0.8
100pl	F(101)	0.6	0.6	0.8	0.8
150pl	F(151)	0.6	0.6	0.8	0.8
220pl	F(221)	0.6	0.6		0.8
330pl	F(331)				0.8

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

High Dielectric Constant Type X7R (R7)/X7S (C7) Characteristics

0.6 ex.0.6	0.6 ex.0.6: T Dimension [mm]										
Lx\ [mm	1]	1.37x1.0 (1M) <0504> 2(2)			:	2.0x1.25 (21) <0805>		3.2x1.6 (31) <1206>			
Rated Voltag Capacitance [Vdc	e 50	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	50 (1H)	25 (1E)	16 (1C)	6.3 (0J)
470pF(471)				0.6						
1000pF(102	0.6				0.6						
2200pF(222)	0.6			1	0.6					
4700pF(472)	0.6			 	0.6					
10000pF(103)	0.6			! !	0.6					
22000pF(223)		0.6	0.6			0.85				
47000pF(473)		0.6	0.6			0.85	0.85		1.0	
0.10μF(104)		0.6	0.6			0.85	0.85	0.85	1.0	
1.0μF(105)				 						1.15

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

High Dielectric Constant Type X7R (R7) Characteristics-Low Profile

0.5		Γ Dimensi	
	LxW [mm]	(1W)	2.0x1.25 (21) <0805>
Number of	Elements	2(2)	4(4)
Rated \	/oltage [Vdc]	16 (1C)	16 (1C)
0.10μF	(104)	0.5	0.5

The part number code is shown in () and Unit is shown in [].

< >: EIA [inch] Code

Capacitance Table

High Dielectric Constant Type X5R (R6) Characteristics

0.0	6 ex.0.6: 1	Dimens	ion [mm]														
	LxW [mm]		(0	<0.6 M) 02>			,	1.37x1.0 (1M) <0504>				2.0x1.25 (21) <0805>			1.25 1) 05>	(3	<1.6 1) 06>
	Number of Elements						2((2)							4(4)	
Capacitano	Rated Voltage [Vdc]	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	16 (1C)	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	16 (1C)	10 (1A)
	1000pF(102)					0.6											
	2200pF(222)						0.6				! ! !						
	4700pF(472)						0.6										
1	0000pF(103)	0.45	0.45	0.45		 	0.6				 					 	
2	22000pF(223)	0.45	0.45	0.45		! !		0.6	0.6		 					 - -	
4	7000pF(473)	0.45	0.45	0.45		! ! !		0.6	0.6		 					 	
	0.10μF(104)	0.45	0.45	0.45		 			0.6								
	$0.22 \mu F(224)$: ! !		0.8			 						
	$0.47 \mu F(474)$					 - -					0.85					 	
	1.0μF(105)				0.45			0.8	0.8	0.8	0.85	0.85		0.85	0.85	0.85	0.85
	2.2μF(225)					 			8.0	0.8		0.85	0.85		0.85		

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

High Dielectric Constant Type X5R (R6) Characteristics-Low Profile

0.5	ex.0.5: T Dimension [mm]				
	LxW [mm]	1.37 (1) <05		2.0x1.25 (21) <0805>	
Number of	Elements	2(2)	4(4)	
Rated \(\)	Voltage [Vdc]	16 (1C)	10 (1A)	10 (1A)	
1.0μ	F(105)	0.5	0.5	0.5	

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

Temperature Compensating Type C0G(5C) Characteristics

LxW [mm]		1.37x1.0(1M)<0504>	2.0x1.25 (21)<0805>	3.2x1.6 (31) <1206>			
Number of Elem	ents	2(2)	4(4)				
Rated Volt. [Vdc]	50(1H)	0(1H) 50(1H) 100(2A) 50				
Capacitance	Tolerance		Part Number				
10pF (100)	±10% (K)	GNM1M25C1H100KD01D	GNM2145C1H100KD01D	GNM3145C2A100KD01D	GNM3145C1H100KD01D		
15pF (150)	±10% (K)	GNM1M25C1H150KD01D	GNM2145C1H150KD01D	GNM3145C2A150KD01D	GNM3145C1H150KD01D		
22pF (220)	±10% (K)	GNM1M25C1H220KD01D	GNM2145C1H220KD01D	GNM3145C2A220KD01D	GNM3145C1H220KD01D		
33pF (330)	±10% (K)	GNM1M25C1H330KD01D	GNM2145C1H330KD01D	GNM3145C2A330KD01D	GNM3145C1H330KD01D		
47pF (470)	±10% (K)	GNM1M25C1H470KD01D	GNM2145C1H470KD01D	GNM3145C2A470KD01D	GNM3145C1H470KD01D		
68pF (680)	±10% (K)	GNM1M25C1H680KD01D	GNM2145C1H680KD01D	GNM3145C2A680KD01D	GNM3145C1H680KD01D		
100pF (101)	±10% (K)	GNM1M25C1H101KD01D	GNM2145C1H101KD01D	GNM3145C2A101KD01D	GNM3145C1H101KD01D		
150pF (151)	±10% (K)	GNM1M25C1H151KD01D	GNM2145C1H151KD01D	GNM3145C2A151KD01D	GNM3145C1H151KD01D		
220pF (221)	±10% (K)	GNM1M25C1H221KD01D	GNM2145C1H221KD01D		GNM3145C1H221KD01D		
330pF (331)	±10% (K)				GNM3145C1H331KD01D		

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

High Dielectric Constant Type X7R(R7)/X7S(C7) Characteristics

LxW [mm]			1.37x1.0(1M)<0504>				
Number of Elem	ents		2	(2)			
Rated Volt. [Vdc]	50(1H) 25(1E) 16(1C) 10(1A					
Capacitance	Tolerance		Part Number				
1000pF (102)	±20% (M)	GNM1M2R71H102MA01D					
2200pF (222)	±20% (M)		GNM1M2R71E222MA01D				
4700pF (472)	±20% (M)		GNM1M2R71E472MA01D				
10000pF (103)	±20% (M)		GNM1M2R71E103MA01D				
22000pF (223)	±20% (M)			GNM1M2R71C223MA01D	GNM1M2R71A223MA01D		
47000pF (473)	±20% (M)			GNM1M2R71C473MA01D	GNM1M2R71A473MA01D		
0.10μF (104)	±20% (M)			GNM1M2R71C104MA01D	GNM1M2C71A104MA01D		

LxW [mm]		2.0x1.25 (21) <0805>				
Number of Elem	ents		4(4)			
Rated Volt. [Vdc]	50(1H) 25(1E) 16(1C)				
Capacitance	Tolerance	Part Number				
470pF (471)	±20% (M)	GNM214R71H471MA01D				
1000pF (102)	±20% (M)	GNM214R71H102MA01D				
2200pF (222)	±20% (M)		GNM214R71E222MA01D			
4700pF (472)	±20% (M)		GNM214R71E472MA01D			
10000pF (103)	±20% (M)		GNM214R71E103MA01D			
22000pF (223)	±20% (M)			GNM214R71C223MA01D		
47000pF (473)	±20% (M)			GNM214R71C473MA01D		
0.10μF (104)	±20% (M)			GNM214R71C104MA01D		

LxW [mm]		3.2x1.6(31)<1206>					
Number of Elem	ents		4(4)				
Rated Volt. [Vdc]	50(1H)	50(1H) 25(1E) 16(1C) 6.3(0J)				
Capacitance	Tolerance		Part Number				
47000pF (473)	±20% (M)	GNM314R71H473MA11D		GNM314R71C473MA01L			
0.10μF (104)	±20% (M)	GNM314R71H104MA11D	GNM314R71E104MA11D	GNM314R71C104MA01L			
1.0μF (105)	±20% (M)				GNM314R70J105MA01L		

The part number code is shown in () and Unit is shown in [].

(Part Number) | GN | M | 1M | 2 | 5C | 1H | 100 | K | D01 | D 6

Product ID **2**S eries **5**Temperature C haracteristics **3**C apacitance Tolerance

3D imensions (LxW) **6**R ated Voltage

4N umber of E lements

9Individual Specification Code

7C apacitance **10**P ackaging

Packaging Code in Part Number shows STD 180mm Reel Taping.

^{*} Please refer to GNM series Specifications and Test Method (2).

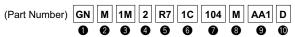
High Dielectric Constant Type X7R(R7) Characteristics-Low Profile

LxW [mm]		1.37x1.0(1M)<0504>	2.0x1.25(21)<0805>
Number of Elements		2 (2)	4(4)
Rated Volt. [Vdc]		16(1C)	16(1C)
Capacitance	Tolerance	Part N	umber
0.10μF (104)	±20% (M)	GNM1M2R71C104MAA1D	GNM214R71C104MAA1D

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

High Dielectric Constant Type X5R(R6) Characteristics

LxW [mm]		0.9x0.6(0M)<0302>						
Number of Elem	ents		2((2)				
Rated Volt. [Vdc	:]	16(1C)	10(1A)	6.3(0J)	4(0G)			
Capacitance	Tolerance		Part N	umber				
10000pF (103)	±20% (M)	GNM0M2R61C103ME18D*	GNM0M2R61A103ME17D*	GNM0M2R60J103ME17D*				
22000pF (223)	±20% (M)	GNM0M2R61C223ME18D*	GNM0M2R61A223ME17D*	GNM0M2R60J223ME17D*				
47000pF (473)	±20% (M)	GNM0M2R61C473ME18D*	GNM0M2R61A473ME17D*	GNM0M2R60J473ME17D*				
0.10μF (104)	±20% (M)	GNM0M2R61C104ME18D*	GNM0M2R61A104ME17D*	GNM0M2R60J104ME17D*				
1.0μF (105)	±20% (M)				GNM0M2R60G105ME17D*			


LxW [mm]		1.37x1.0(1M)<0504>					
Number of Elem	ents		2 (2)				
Rated Volt. [Vdc]	50(1H)	25(1E)	16(1C)			
Capacitance	Tolerance		Part Number				
1000pF (102)	±20% (M)	GNM1M2R61H102MA01D					
2200pF (222)	±20% (M)		GNM1M2R61E222MA01D				
4700pF (472)	±20% (M)		GNM1M2R61E472MA01D				
10000pF (103)	±20% (M)		GNM1M2R61E103MA01D				
22000pF (223)	±20% (M)			GNM1M2R61C223MA01D			
47000pF (473)	±20% (M)			GNM1M2R61C473MA01D			
0.22μF (224)	±20% (M)		GNM1M2R61C224ME18D*				
1.0μF (105)	±20% (M)			GNM1M2R61C105ME18D*			

LxW [mm]		1.37x1.0(1M)<0504>				
Number of Elem	ents	2(2)				
Rated Volt. [Vdc]	10(1A)	6.3(0J)			
Capacitance	Tolerance	Part Number				
22000pF (223)	±20% (M)	GNM1M2R61A223MA01D				
47000pF (473)	±20% (M)	GNM1M2R61A473MA01D				
0.10μF (104)	±20% (M)	GNM1M2R61A104MA01D				
1.0μF (105)	±20% (M)	GNM1M2R61A105ME17D*	GNM1M2R60J105ME12D*			
2. 2μF (225)	±20% (M)	GNM1M2R61A225ME18D*	GNM1M2R60J225ME18D*			

LxW [mm]		2.0x1.25(21)<0805>				
Number of Elem	ents	2(2)				
Rated Volt. [Vdc]	16(1C)	16(1C) 10(1A) 6.3(0J)			
Capacitance	Tolerance		Part Number			
0.47μF (474)	±20% (M)	GNM212R61C474MA16D				
1.0μF (105)	±20% (M)	GNM212R61C105MA16D	GNM212R61A105MA13D			
2.2μF (225)	±20% (M)		GNM212R61A225ME16D*	GNM212R60J225ME16D*		

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

^{*} Please refer to GNM series Specifications and Test Method (2).

Product IDSeriesTemperature C haracteristicsCapacitance Tolerance

Packaging Code in Part Number shows STD 180mm Reel Taping.

 ³D imensions (LxW)
 3N umber of E lements
 3R ated Voltage
 3C apacitance
 3Individual S pecification C ode
 3D imensions (LxW)
 4N umber of E lements
 7C apacitance
 3D imensions (LxW)
 4N umber of E lements
 5P capacitance
 3D reactions

High Dielectric Constant Type X5R(R6) Characteristics

LxW [mm]		2.0x1.25 (21) <0805>				
Number of Elem	ents	4(4)				
Rated Volt. [Vdc]	10(1A)	6.3(0J)			
Capacitance	Tolerance	Part Number				
1.0μF (105)	±20% (M)	GNM214R61A105ME17D*	GNM214R60J105ME17D*			
2.2μF (225)	±20% (M)		GNM214R60J225ME18D*			

LxW [mm]		3.2x1.6(31)<1206>				
Number of Elem	ents	4 (4)				
Rated Volt. [Vdc]	16(1C) 10(1A)				
Capacitance Tolerance		Part Number				
1.0μF (105)	±20% (M)	GNM314R61C105MA15D	GNM314R61A105MA13D			

The part number code is shown in () and Unit is shown in []. <>: EIA [inch] Code

High Dielectric Constant Type X5R(R6) Characteristics-Low Profile

LxW [mm]		1.37x1.0(1	2.0x1.25(21)<0805>	
Number of Elem	ents	20	4(4)	
Rated Volt. [Vdc]	16(1C)	10(1A)	
Capacitance	Tolerance			
1.0μF (105)	±20% (M)	GNM1M2R61C105MEA2D*	GNM1M2R61A105MEA4D*	GNM214R61A105MEA2D*

The part number code is shown in () and Unit is shown in []. < >: EIA [inch] Code

^{*} Please refer to GNM series Specifications and Test Method (2).

^{*} Please refer to GNM series Specifications and Test Method (2).

GNM Series Specifications and Test Methods (1)

When no "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (1). When "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (2).

			·				is tubic, pic	ease refer to GNM Series Specifications and Test Methods (2).				
No.	lte	em	Temperature Compensating Type	Specifications High [S Dielectri	іс Туре			Tes	t Method		
1	Operating Temperat Range		5C: -55 to +125°C	R7, C7: –55 to + R6: –55 to +85°C								
2	Rated Vol	ltage	See the previous pag	ges.	es.				The rated voltage is defined as the maximum voltage that may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{0,p} , whichever is larger, should be maintained within the rated voltage range.			V ^{P-P} or V ^{O-P} ,
3	Appearan	ice	No defects or abnorr	nalities				Visual inspection	n			
4	Dimensio	ns	Within the specified	dimensions				Using calipers				
5	Dielectric	Strength	No defects or abnorr	nalities				No failure should (5C) or 250% of terminations for current is less the	the rated vol	tage (R7) i	s applied b	etween the
6	Insulation Resistance		More than 10,000MΩ (whichever is smaller					The insulation revoltage not exceed max. and within	eding the rat	ed voltage		
7	Capacitar	nce	Within the specified t	olerance				The capacitance	e/Q/D F shou	ıld be mea:	sured at 25	°C at the
			30pF min.: Q≥1000					frequency and v				
	Q/		30pF max.: Q≥400+20C	Char. 25V min.	16V	10V		Char.	5C		R	7
8	Dissipation (D.F.)	on Factor		R7, R6, 0.025 C7 max.	0.035 max.	0.038 max		Frequency	1±0.1M	Hz	1±0.1	kHz
	,		C: Nominal Capacitance (pF)					Voltage	0.5 to 5V	/rms	1.0±0.2	2Vrms
9	Capacitance Temperature Characteristics	Capacitance Change Temperature Coefficient Capacitance Drift	Within the specified tolerance (Table A) Within the specified tolerance (Table A) Within ±0.2% or ±0.05pF (whichever is	Char. Temp Rang R7 -55°C to +125 R6 -55°C to +85' C7 -55°C to +125	e Te	5°C	Cap. Change Within ±15% Within ±22%	The capacitance each specified to (1) Temperature. The temperature tance measured temperature sec capacitance shot temperature coefficient of the capacitance between the masteps 1, 3 and 5 Step 1 2 3 4 5 (2) High Dielect. The ranges of capacitance shot temperature coefficient of the capacitance between the masteps 1, 3 and 5 (2) The capacitance of the	emperature s c Compensati c coefficient is in step 3 as quentially from suld be within efficient and c c drift is calcu ximum and m by the cap. v —55±3 (for 5 125±3 (for 5 ric Constant T apacitance ch	tage. ng Type s determine a reference n steps 1 th the specific apacitance lated by di ininimum m value in ste emperatur 25±2 5C/R7/C7) 25±2 5ype tange com ture ranges	ed using the e. When cynrough 5, the dolerance change as widing the ceasured variety 3. e (*C) , -30±3 (for pared with	e capacicling the new fee for the se in Table A. differences lues in the
10	No removal of the terminations or other defect should occur. GNM 4 GNM 2 By a contact the strength of Termination of Termin		• Initial measure Perform a heat then set for 24: Perform the ini Solder the capa Fig.1 using a eu the test jig for 11 The soldering sl reflow method a soldering is unif Type GNM1M2 GNM212 GNM214	ment for high treatment at ±2 hours at ro tial measuren citor to the te- tectic solder. D±1 sec. hould be done nd should be orm and free a 0.5 0.6 0.6	dielectric 150+0/-10 com tempe nent. st jig (glass Then apply e either wit conducted of defects b 1.6 1.8 2.0	or C for one or ature. s epoxy boa 5N force in the an iron of the with care such as he c 0.32 0.5 0.25	ard) shown in a parallel with r using the so that the at shock. d 0.32 0.5 0.25					
								<u>GNM314</u>	0.8	2.5 Fig. 1	0.4	0.4 (in mm)

Continued on the following page.

GNM Series Specifications and Test Methods (1

When no "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (1). Continued from the preceding page. When "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (2). Specifications Test Method No Temperature High Dielectric Type Compensating Type Appearance No defects or abnormalities Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The Within the specified tolerance Capacitance capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied 30pF min : Q≥1000 Vibration 30pF max.: uniformly between the approximate limits of 10 and 55Hz. The Char. 25V min. 10V 6.3V Resistance 16V Q≥400+20C frequency range, from 10 to 55Hz and return to 10Hz, should Q/D.F. R7, R6, 0.025 0.035 0.035 0.05 be traversed in approximately 1 minute. This motion should be C7 max. max max applied for a period of 2 hours in each of 3 mutually perpendic-C: Nominal Capacitance (pF) ular directions (total of 6 hours). Appearance No marking defects Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Capacitance Within ±5% or ±0.5pF Then apply a force in the direction shown in Fig. 3 for 5±1 sec. Within ±10% Change (whichever is larger) The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free •GNM□□4 •GNM□□2 of defects such as heat shock. 100 100 5.0 5.0 12 Deflection 50 Pressurizing speed: 1.0mm/sec Pressurize R230 t=0.8mm Type b Flexure : ≤1 GNM1M2 2.0±0.05 GNM212 2.0±0.05 0.6±0.05 0.5±0.05 0.5±0.05 citance meter **GNM214** 2 0+0 05 0.7±0.05 | 0.3±0.05 | 0.2±0.05 **GNM314** 2.5±0.05 | 0.8±0.05 | 0.4±0.05 | 0.4±0.05 Fig. 3 Fig. 2 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at Solderability of 75% of the terminations are to be soldered evenly and 13 80 to 120°C for 10 to 30 seconds. After preheating, immerse in Termination continuously. eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C Resistance to The measured and observed characteristics should satisfy the Soldering Heat specifications in the following table Appearance No marking defects Within ±2.5% Preheat the capacitor at 120 to 150°C for 1 minute. Immerse Capacitance or ± 0.25 pF R7, R6, C7: Within ±7.5% the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder (whichever is Change solution at 270±5°C for 10±0.5 seconds. Let sit at room larger) temperature for 24±2 hours, then measure. 30pF min.: Q≥1000 14 30pF max.: Initial measurement for high dielectric constant type Char. 25V min. 6.3V 16V 10V Q≥400+20C Perform a heat treatment at 150+0/-10°C for one hour and Q/D.F. 0.035 R7. R6. 0.025 0.035 0.05 then let sit for 24±2 hours at room temperature. C7 max max max max C: Nominal Perform the initial measurement Capacitance (pF)

Continued on the following page.

More than $10,000M\Omega$ or $500\Omega \cdot F$ (whichever is smaller)

I.R.

Dielectric

Strength

No failure

GNM Series Specifications and Test Methods (1)

When no "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (1). Continued from the preceding page

<u> </u>	Continued fr	om the prec	eding page.	When "*" is added in PNs table, pl	ease refer to GI	NM Series Spe	cificatio	ns and Test M	ethods (2)
No.	Ite	em	_	Specifications		Te	st Metho	d	
			Temperature Compensating Type	High Dielectric Type					
	Temperat Cycle	ture	The measured and conspecifications in the	observed characteristics should satisfy the following table.	Fix the capacitor to the supporting jig in the same manner and				
		Appearance	No marking defects				. ,	erform the five	-
		Capacitance Change	Within ±2.5% or ±0.25pF (whichever is larger)	R7, R6, C7: Within ±7.5%	according to the four heat treatments listed in the following table. Let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.				
15		0.5.5	30pF min.: Q≥1000 30pF max.: Q≥400+20C	Char. 25V min. 16V 10V 6.3V	Step Temp. (°C)	Min. Operating Temp.+0/–3	Room Temp.	Max. Operating Temp. +3/–0	Room Temp.
		Q/D.F.		R7, R6, 0.025 0.035 0.035 0.05 C7 max. max. max. max. max.	Time (min.)	30±3	2 to 3	30±3	2 to 3
			C:Nominal Capacitance (pF)		Initial measu	rement for hig	h dielectr	ic constant type	е
		I.R.	. " ,	Ω or 500 Ω · F (whichever is smaller)		eat treatment a or 24±2 hours a		10°C for one h	our and
		Dielectric		(,	-	initial measure		imperature.	
		Strength	No failure						
	Humidity State	Steady	The measured and o	observed characteristics should satisfy the following table.					
		Appearance	No marking defects						
		Capacitance Change	Within ±5% or ±0.5pF (whichever is larger)	R7, R6, C7: Within ±12.5%	Sat the conce	itar at 4012°C	and 00 to	050/ humiditu	for 500 1
16		Q/D.F.	30pF and over: Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	Char. 25V min. 16V 10V/6 3V R7, R6, 0.05 0.05 0.05 C7 max. max. max.	Set the capacitor at 40±2°C and 90 to hours. Remove and let sit for 24±2 hours at measure.				
		I.R.	More than 1,000M Ω	or $50\Omega \cdot F$ (whichever is smaller)					
	Humidity	Load	The measured and o	observed characteristics should satisfy the following table.					
		Appearance	No marking defects						
		Capacitance Change	Within ±7.5% or ±0.75pF (whichever is larger)	R7, R6, C7: Within ±12.5%	Apply the rated voltage at 40±2°C and 90 to 95% humi 500±12 hours.			midity for	
17		Q/D.F.	30pF and over: Q≥200 30pF and below: Q≥100+10C/3 C: Nominal	Char. 25V min. 16V 10V/6 3V R7, R6, 0.05 0.05 0.05 C7 max. max. max.	measure.	et sit for 24±2 scharge currer		room temperat	ure, then
		I.R.	Capacitance (pF) More than 500MΩ or	25Ω · F (whichever is smaller)	_				

C ontinued on the following page. $\begin{tabular}{|c|c|c|c|c|c|} \hline \end{tabular}$

GNM Series Specifications and Test Methods (1)

C ontinued from the preceding page.								· ·	ease refer to GNM Series Specifications and Test Methods (1). ease refer to GNM Series Specifications and Test Methods (2).
	-	la.			Specifications				Total National
N	IO.	lo. Item Temperature High Dielectric Type Compensating Type		Test Method					
		High Tem Load	perature	The measured and o specifications in the f		oserved characteristics should satisfy the ollowing table.			
			Appearance	No marking defects					
			Capacitance Change	Within ±3% or ±0.3pF (whichever is larger)	or $\pm 0.3 pF$ (whichever is			Apply 200% of the rated voltage for 1000±12 hours at the maximum operating temperature ±3°C. Let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.	
	18		Q/D.F.	30pF and over: Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	Char. R7, R6, C7	25V min. 0.04 max.	16V 0.05 max.	10V/6.3V 0.05 max.	Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 24±2 hours at room temperature. Perform initial measurement.

Table A

I.R.

	Nominal Values	Capacitance Change from 25°C (%)						
Char.	(ppm/°C) *1	-55°C			O _C	-10°C		
	(ppm/*C) *1	Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

^{*1:} Nominal values denote the temperature coefficient within a range of 25 to 125°C.

More than 1,000M Ω or 50 Ω · F (whichever is smaller)

GNM Series Specifications and Test Methods (2)

When no "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (1). When "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (2).

No.	ltem	Specifications	Test Method
1	Operating Temperature Range	R6: –55°C to +85°C	
2	Rated Voltage	See the previous pages.	The rated voltage is defined as the maximum voltage that may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{O,p} , whichever is larger, should be maintained within the rated voltage range.
3	Appearance	No defects or abnormalities	Visual inspection
4	Dimensions	Within the specified dimension	Using calipers
5	Dielectric Strength	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.
6	Insulation Resistance	$50\Omega \cdot F$ min.	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 1 minute of charging.
7	Capacitance	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at the
8	Dissipation Factor (D.F.)	0.1 max.*3 Table 3 GNM0M2 R6 103/223/473/104 GNM1M2 R6 0J 105/225 GNM1M2 R6 1A 105MEA4 GNM1M2 R6 1A 225 GNM212 R6 0J 225 GNM212 R6 1A 225 GNM214 R6 0J 225 *3 However 0.125 max. for Table 3 items.	Nominal Capacitance Measuring Frequency Measuring Voltage
9	Capacitance Temperature Characteristics	Char.Temp. RangeReference Temp.Cap. ChangeR6-55 to +85°C25°CWithin ±15%	The capacitance change should be measured after 5 min.at each specified temperature stage. Step Temperature (*C) 1 25±2 2 -55±3 3 25±2 4 85±3 5 25±2 The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges. • Initial measurement for high dielectric constant type. Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.
10	Adhesive Strength of Termination	No removal of the terminations or other defects should occur. GNM 4 GNM 2 By a a a a a a a a a a a a a a a a a a a	Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 5N (GNM0M2: 2N) force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Type a b c d GNM0M2 0.2 0.96 0.25 0.2 GNM1M2 0.5 1.6 0.32 0.32 GNM1M2 0.5 1.6 0.32 0.32 GNM212 0.6 1.8 0.5 0.5 GNM214 0.6 2.0 0.25 0.25 GNM314 0.8 2.5 0.4 0.4 (in mm)

Appearance No defects or abnormalities Within the specified tolerance Capacitance 11 Vibration D.F. *3 However 0.125 max. for Table 3 items.

Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).

GNM Series Specifications and Test Methods (2

When no "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (1).

When "*" is added in PNs table, please refer to GNM Series Specifications and Test Methods (2).

No Item Specifications Test Method

No.			Specifications	Test Method
IVO.	100	Appearance	'	
	Capacitance Change		No marking defects Within ±10%	Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done by the reflow method and should be conducted with care so that the
12			Fig. 2 •GNM□2 •GNM□2 •GNM□2 •GNM□2 •GNM□2 •GNM□2 •GNM□2 •GNM0M2 •	soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize Flexure : ≦1 Capacitance meter 45 45 Fig. 3
13	3 Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.
14	Resistance to Soldering Heat	Appearance	No marking defects	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse
		Capacitance Change	R6*4: Within ±7.5% *4GNM0M2R60G105: Within +15/-7.5%	the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds.
		D.F.	0.1 max. *³ *³However 0.125 max. for Table 3 items.	Let sit at room temperature for 24±2 hours, then measure. • Initial measurement
		I.R.	$50Ω \cdot F$ min.	Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform
		Dielectric Strength	No failure	the initial measurement.
		Appearance	No marking defects	Fix the capacitor to the supporting jig in the same manner and
15	Temperature Cycle	Capacitance Change	R6*5: Within ±12.5% *5 GNM0M2R60G105, GNM0M2R60J103/223/473/104, GNM0M2R61A103/223/473/104, GNM0M2R61C103/223/473/104, GNM1M2R61A105: Within ±15%	under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure. Step 1 2 3 4
		D.F.	0.1 max. *3 *3 However 0.125 max. for Table 3 items.	Temp. (°C) Min. Operating Room Temp. Temp. Temp. Time (min.) 30±3 2 to 3 30±3 2 to 3
		I.R.	$50\Omega \cdot$ F min.	Initial measurement
		Dielectric Strength	No failure	Perform a heat treatment at 150 +0/-10 °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.
16	High Temperature High Humidity Steady)	Appearance	No marking defects	Apply the rated voltage at 40±2°C and 90 to 95% humidity for
		Capacitance Change	R6: Within ±12.5%	500±12 hours. The charge/discharge current is less than 50mA. • Initial measurement Perform a heat treatment at 150 +0/-10°C for one hour
		D.F.	0.2 max.	and then let sit for 24±2 hours at room temperature. Perform the initial measurement.
		I.R.	12.5Ω · F min.	Measurement after test Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure.
17	Durability	Appearance	No marking defects	Apply 150% (GNM1M2R61A225/1C105: 125% of the rated
		Capacitance Change	R6: Within ±12.5%	voltage) of the rated voltage for 1000±12 hours at the maximum operating temperature ±3°C. Let sit for 24±2 hours at room temperature, then measure.
		D.F.	0.2 max.	The charge/discharge current is less than 50mA.
		I.R.	$25\Omega \cdot$ F min.	Initial measurement Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. Measurement after test Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure.