Features

* Package in 8mm tape on 7” diameter reels.
* Compatible with automatic placement equipment.
* Compatible with infrared and vapor phase reflow solder process.
* EIA STD Package.
* I.C. Compatible.

Package dimensions

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Lens</th>
<th>Source Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTST-C190GKT</td>
<td>Water Clear</td>
<td>GaP on GaP Green</td>
</tr>
</tbody>
</table>

Notes:

1. All dimensions are in millimeters (inches).
2. Tolerance is ± 0.10 mm (.004”) unless otherwise noted.
Absolute Maximum Ratings At Ta=25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LTST-C190GKT</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>100</td>
<td>mW</td>
</tr>
<tr>
<td>Peak Forward Current</td>
<td>120</td>
<td>mA</td>
</tr>
<tr>
<td>(1/10 Duty Cycle, 0.1ms Pulse Width)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Forward Current</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>Derating Linear From 50°C</td>
<td>0.6</td>
<td>mA/°C</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-55°C to +85°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-55°C to +85°C</td>
<td></td>
</tr>
<tr>
<td>Wave Soldering Condition</td>
<td>260°C For 5 Seconds</td>
<td></td>
</tr>
<tr>
<td>Infrared Soldering Condition</td>
<td>260°C For 5 Seconds</td>
<td></td>
</tr>
<tr>
<td>Vapor Phase Soldering Condition</td>
<td>215°C For 3 Minutes</td>
<td></td>
</tr>
</tbody>
</table>

Suggest IR Reflow Condition :

![Temperature vs Time Graph](image_url)
Electrical Optical Characteristics At Ta=25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Part No.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminous Intensity</td>
<td>IV</td>
<td>C190GKT</td>
<td>1.6</td>
<td>6.0</td>
<td>mcd</td>
<td>IF = 10mA Note 1</td>
<td></td>
</tr>
<tr>
<td>Viewing Angle</td>
<td>2θ/1/2</td>
<td>C190GKT</td>
<td>130</td>
<td></td>
<td>deg</td>
<td>Note 2 (Fig.6)</td>
<td></td>
</tr>
<tr>
<td>Peak Emission Wavelength</td>
<td>λP</td>
<td>C190GKT</td>
<td>565</td>
<td></td>
<td>nm</td>
<td>Measurement @Peak (Fig.1)</td>
<td></td>
</tr>
<tr>
<td>Dominant Wavelength</td>
<td>λd</td>
<td>C190GKT</td>
<td>569</td>
<td></td>
<td>nm</td>
<td>Note 3</td>
<td></td>
</tr>
<tr>
<td>Spectral Line Half-Width</td>
<td>Δλ</td>
<td>C190GKT</td>
<td>30</td>
<td></td>
<td>nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Voltage</td>
<td>VF</td>
<td>C190GKT</td>
<td>2.1</td>
<td>2.6</td>
<td>V</td>
<td>IF = 20mA</td>
<td></td>
</tr>
<tr>
<td>Reverse Current</td>
<td>IR</td>
<td>C190GKT</td>
<td></td>
<td>100</td>
<td>μA</td>
<td>VR = 5V</td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>C</td>
<td>C190GKT</td>
<td>35</td>
<td></td>
<td>PF</td>
<td>VF = 0 f = 1MHZ</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
2. θ/1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. The dominant wavelength, λd is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
Bin Code List

<table>
<thead>
<tr>
<th>Luminous Intensity</th>
<th>Unit: mcd @10mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin Code</td>
<td>Min.</td>
</tr>
<tr>
<td>G</td>
<td>1.6</td>
</tr>
<tr>
<td>H</td>
<td>2.5</td>
</tr>
<tr>
<td>J</td>
<td>4.0</td>
</tr>
<tr>
<td>K</td>
<td>6.3</td>
</tr>
<tr>
<td>L</td>
<td>10.0</td>
</tr>
</tbody>
</table>
Typical Electrical / Optical Characteristics Curves

(25 °C Ambient Temperature Unless Otherwise Noted)

![Graphs showing various electrical and optical characteristics](image)

- **Fig. 1**: RELATIVE INTENSITY VS. WAVELENGTH
- **Fig. 2**: FORWARD CURRENT VS. FORWARD VOLTAGE
- **Fig. 3**: FORWARD CURRENT DERATING CURVE
- **Fig. 4**: RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT
- **Fig. 5**: LUMINOUS INTENSITY VS. AMBIENT TEMPERATURE
- **Fig. 6**: SPATIAL DISTRIBUTION
Cleaning

Do not use unspecified chemical liquid to clean LED they could harm the package. If clean is necessary, immerse the LED in ethyl alcohol or in isopropyl alcohol at normal temperature for less one minute.

Suggest Soldering Pad Dimensions

![Soldering Pad Dimensions Diagram]

Package Dimensions Of Tape And Reel

![Package Dimensions Diagram]

Notes:
1. All dimensions are in millimeters (inches).
Notes:
1. Empty component pockets sealed with top cover tape.
2. 7 inch reel-3000 pieces per reel.
3. Minimum packing quantity is 500 pcs for remainders.
4. The maximum number of consecutive missing lamps is two.
CAUTIONS

1. Application limitation
The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household application.) Consult Liteon’s sales in advance for information on application in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as airplanes, automobiles, traffic control equipment, life support system and safety devices).

2. Storage
Before opening the package: The LEDs should be kept at 30°C or less and 85%RH or less. The LEDs should be used within a year.
After opening the package: The LEDs should be kept at 30°C or less and 70%RH or less. The LEDs should be soldered within 168 hours (7 days) after opening the package.
Please avoid rapid transitions in ambient temperature in high humidity environments where condensation may occur.

3. Cleaning
Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED.

4. Soldering
Do not apply any stress to the lead frame during soldering while the LED is at high temperature.
Recommended soldering condition

<table>
<thead>
<tr>
<th>Reflow soldering</th>
<th>Soldering iron</th>
<th>Wave soldering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-heat</td>
<td>120~150°C</td>
<td>Pre-heat</td>
</tr>
<tr>
<td>Pre-heat time</td>
<td>120 sec. Max.</td>
<td>Pre-heat time</td>
</tr>
<tr>
<td>Peak temperature</td>
<td>240°C Max.</td>
<td>Solder wave</td>
</tr>
<tr>
<td>Soldering time</td>
<td>10 sec. Max.</td>
<td>Soldering time</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td>300°C Max.</td>
</tr>
<tr>
<td>Soldering time</td>
<td></td>
<td>3 sec. Max.</td>
</tr>
<tr>
<td>(one time only)</td>
<td></td>
<td>100°C Max.</td>
</tr>
</tbody>
</table>

5. Drive Method
LED is a current operated device, and therefore, requires some kind of current limiting incorporated into the drive circuit. This current limiting typically takes the form of a current limiter resistor placed in series with the LED.
Consider worst case voltage variations that could occur across the current limiting resistor. The forward current should not be allowed to change by more than 40% of its desired value.

![Circuit model A](image)

(A) Recommended circuit.

(B) The difference of brightness between LEDs could be found due to the Vf-If characteristics of LED.
6. ESD (Electrostatic Discharge)
Static Electricity or power surge will damage the LED. Use of a conductive wrist band or anti-electrostatic glove is recommended when handling these LED. All devices, equipment and machinery must be properly grounded.

7. Reliability Test

<table>
<thead>
<tr>
<th>Classification</th>
<th>Test Item</th>
<th>Test Condition</th>
<th>Reference Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endurance Test</td>
<td>Operation Life</td>
<td>Ta= Under Room Temperature As Per Data Sheet Maximum Rating</td>
<td>MIL-STD-750D:1026 (1995)</td>
</tr>
<tr>
<td></td>
<td>High Humidity Storage</td>
<td>Ta= 65±5°C, RH= 90 ~ 95%</td>
<td>JIS C 7021:B-11(1982)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Test Time= 1000HRS±2HRS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storage</td>
<td>*Test Time= 1000HRS (-24HRS,+72HRS)</td>
<td>JIS C 7021:B-10 (1982)</td>
</tr>
<tr>
<td></td>
<td>Low Temperature Storage</td>
<td>Ta= -55±5°C</td>
<td>JIS C 7021:B-12 (1982)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Test Time= 1000HRS (-24HRS,+72HRS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dwell Time= 10 ± 1secs</td>
<td>MIL-STD-750D:2031(1995)</td>
</tr>
<tr>
<td></td>
<td>IR-Reflow</td>
<td>Ramp-up rate(183°C to Peak)+3°C second max Temp. maintain at 125(±25)°C 120 seconds max</td>
<td>MIL-STD-750D:2031.2(1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temp. maintain above 183°C 60-150 seconds Peak temperature range 235°C+/-0°C</td>
<td>J-STD-020(1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time within 5°C of actual Peak Temperature (tp) 10-30 seconds Ramp-down rate +6°C/second max</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immersion time 2±0.5 sec</td>
<td>MIL-STD-750D:2026(1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immersion rate 25±2.5 mm/sec</td>
<td>IEC 68 Part 2-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coverage ≥95% of the dipped surface</td>
<td>JIS C 7021:A-2(1982)</td>
</tr>
</tbody>
</table>

8. Others
The appearance and specifications of the product may be modified for improvement without notice.

Part No.: LTST-C190GKT

Page: 9 of 9

BNS-OD-C131/A4