CUSTOMER: .

DATE : FEB 15, 2013.

REV : REV. 0.0 .

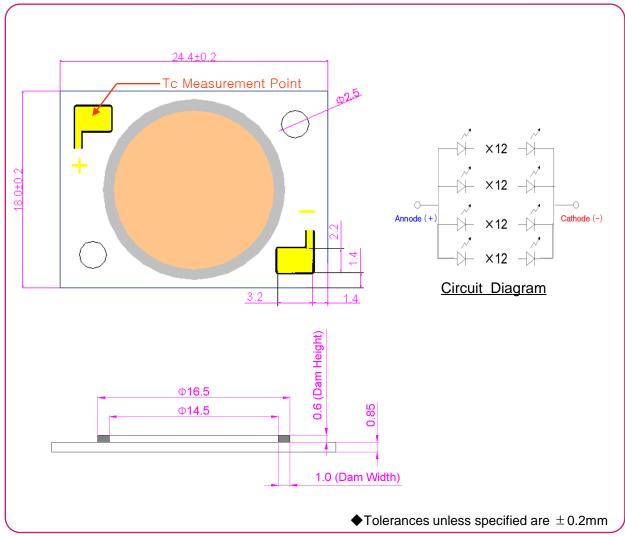
PRODUCT FAMILY DATA SHEET

MODEL NAME: LEMWM18680 Series

CONTENTS

1. Features	3
2. Applications	3
3. Outline Dimensions	3
4. Absolute Maximum Ratings	4
5. Electro-Optical Characteristics	4
6. Flux Characteristics and Order Code	5
7. Chromaticity Bins	6 ~ 7
8. Typical Characteristic Curves	8 ~ 13
9. Reliability Test Items and Conditions	14
10. Packing and Labeling of Products	15~19
11. Cautions on Use	20~23
Appendix	24

1. Features


- External Dimensions: 18.0×24.0×1.45mm
- Internal Structure: Aluminum Base Chip on Board
- Compact High Flux Density Light Source
- Uniform High Quality Illumination
- Energy Star / ANSI Compliant Color Binning Structure with 3 SDCM Options
- UL Recognized Component (E356829)
- RoHS Compliant

2. Applications

- Bulb, Down Light, Spot Light, High Bay Light, Flood Light, Outdoor Light

3. Outline Drawings

(unit:mm)

4. Absolute Maximum Ratings

(Ta=25 °C)

Items	Symbol	Rating	Unit
Forward Current	lf	680	mA
Power Consumption	Pd	30	W
Operating Temperature	Topr	-30 ~ +85	°C
Storage Temperature	Tstg	-40 ~ +100	°C
Case Temperature *1)	Tc	100	°C
Junction Temperature *2)	Tj	150	°C

^{*1)} Refer to '2. Outline Drawings' for Tc measurement point

5. Electro - Optical Characteristics

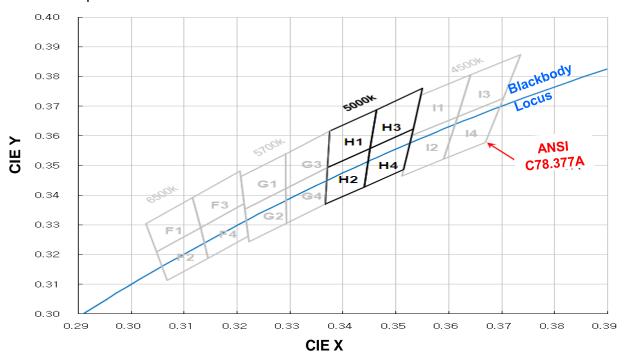
(Ta=25 °C, If = 340mA)

Item	Symbol	ССТ	Min.	Тур.	Max.	Unit
Luminous Flux	Ф۷	5000 (H) 4000 (J) 3000 (L) 2700 (M)	1292 1227 1160 1160	1421 1357 1350 1240		lm
Luminous Efficacy	lm/W	5000 (H) 4000 (J) 3000 (L) 2700 (M)	100 95 90 90	111 105 104 96		lm/W
Color Rendering Index	Ra	5000 (H) 4000 (J) 3000 (L) 2700 (M)	80	82		-
Forward Voltage	Vf	All	36.5	38.0	39.5	V
Chromaticity Coordinates	Cx / Cy	All	Refer to	Refer to 'Chromaticity Bins'		
Viewing Angle	2Θ1/2	All	-	116	-	deg
Thermal Resistance	Rth j-c	All	-	1.3	-	°C/W

^{**} These values are measured by the LG Innotek optical spectrum analyzer within the following tolerances. Luminous Flux (Φ v): \pm 10%, Forward Voltage (Vf): \pm 3%, Chromaticity Coordinate Value: \pm 0.005, CRI Value: \pm 2

^{*2)} $Tj = Tc + Rth j - c \times Pd$

^{*} Operating the COB at or beyond the listed maximum ratings may affect device reliability and cause permanent damage.

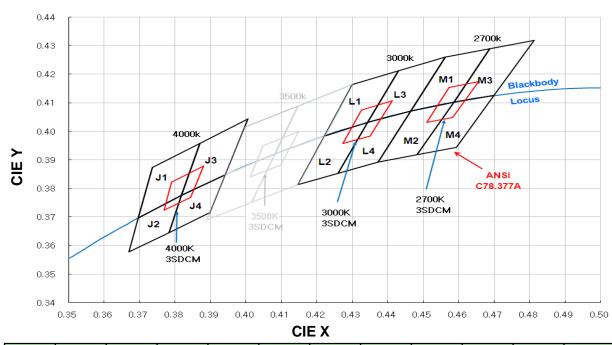

^{*} The COBs are not designed to be driven in reverse bias.

6. Flux Characteristics and Order Code

Color	Min. CRI	ССТ	Vf @ 340mA		inous Flux @ 340mA		Order Code
Coloi	CRI	CCT	[V]	Bin Code	Min.	Тур.	Order Code
Cool		5000 (H)			1292	1421	LEMWM118680HGxxxx
Neutral	90	4000 (J)	36.5 ~ 39.5 (Typ. 38)	6 -	1227	1357	LEMWM18680JGxxxx
Warm	- 80 -	3000 (L)		6	1160	1350	LEMWM18680LGxxxx
Warm		2700 (M)			1160	1240	LEMWM18680MGxxxx

7. Chromaticity Bins

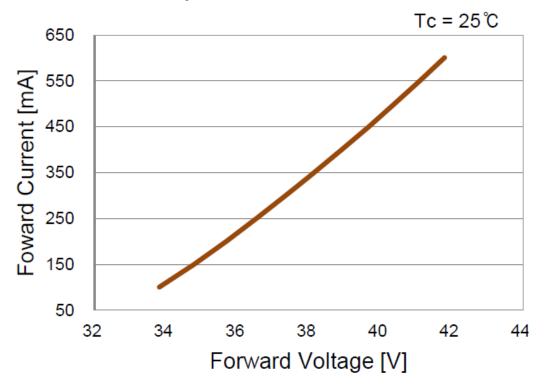
LG Innotek complies with the ANSI C78.377A standard for its chromaticity bin structure. For each ANSI quadrangle for the CCT range of 4500K to 6500K, LG Innotek provides 4 micro bins.

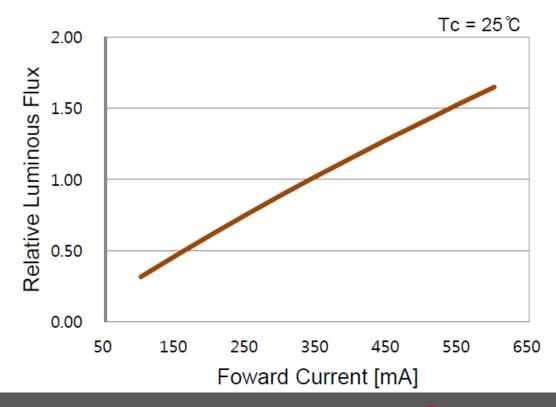


Bin	CIE X	CIE Y	Bin	CIE X	CIE Y	Bin	CIE X	CIE Y	Bin	CIE X	CIE Y
	0.3548	0.3736		0.3376	0.3616		0.3207	0.3462		0.3028	0.3304
11	0.3642	0.3805	H1	0.3464	0.3688	G1	0.3292	0.3539	F1	0.3117	0.3393
- 11	0.3617	0.3663		0.3452	0.3558	GI	0.3293	0.3423		0.3131	0.3290
	0.3530	0.3601		0.3371	0.3493		0.3215	0.3353		0.3048	0.3209
	0.3530	0.3601		0.3371	0.3493		0.3215	0.3353		0.3048	0.3209
12	0.3617	0.3663	ய	0.3452	0.3558	G2	0.3293	0.3423	F2	0.3131	0.3290
12	0.3591	0.3522	H2	0.3441	0.3428	GZ	0.3294	0.3306		0.3145	0.3187
	0.3512	0.3465		0.3366	0.3369		0.3222	0.3243		0.3068	0.3113
	0.3642	0.3805		0.3464	0.3688		0.3292	0.3539		0.3117	0.3393
13	0.3736	0.3874	Н3	0.3551	0.3760	G3	0.3376	0.3616	F3	0.3205	0.3481
13	0.3703	0.3726	113	0.3533	0.3624	GS	0.3371	0.3493		0.3213	0.3371
	0.3617	0.3663		0.3452	0.3558		0.3293	0.3423		0.3131	0.3290
	0.3617	0.3663		0.3452	0.3558		0.3293	0.3423		0.3131	0.3290
14	0.3703	0.3726	H4	0.3533	0.3624	G4	0.3371	0.3493	F4	0.3213	0.3371
14	0.3670	0.3578	H4	0.3515	0.3487	04	0.3366	0.3369	F4	0.3221	0.3261
	0.3591	0.3522		0.3441	0.3428		0.3294	0.3306		0.3145	0.3187

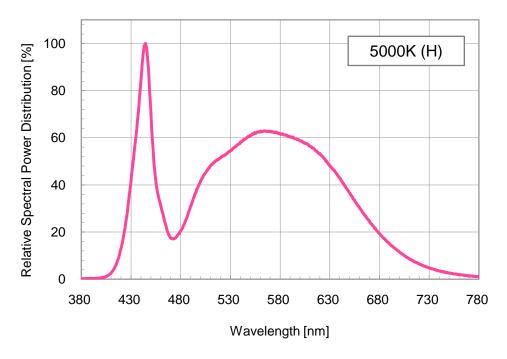
^{*} F, G, I color bins are not available but can be developed within 1 month based on demand.

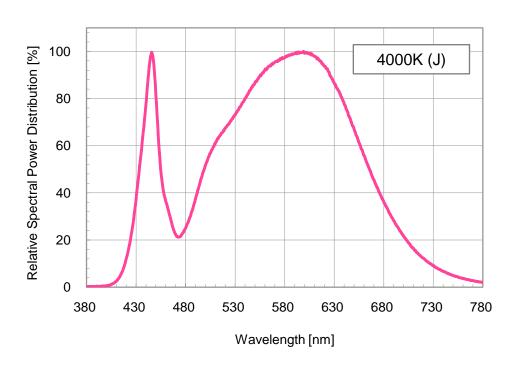
7. Chromaticity Bins (Continued)


LG Innotek complies with the ANSI C78.377A standard for its chromaticity bin structure. For each ANSI quadrangle for the CCT range of 2700K to 4000K, LG Innotek provides 4 micro bins. A 3 SDCM micro bin option is also available.

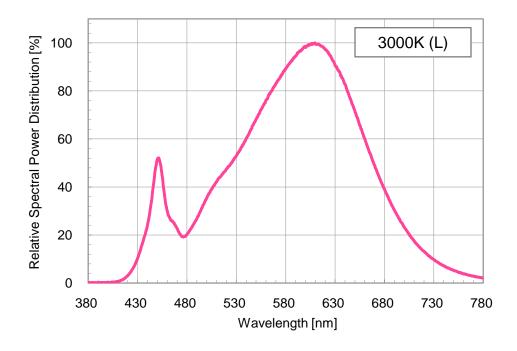

Bin	CIE X	CIE Y	Bin	CIE X	CIE Y	Bin	CIE X	CIE Y	Bin	CIE X	CIE Y
	0.4562	0.4260		0.4299	0.4165		0.3996	0.4015		0.3736	0.3874
M1	0.4687	0.4289] ,,	0.4430	0.4212	K1	0.4146	0.4089	J1	0.3870	0.3958
IVII	0.4586	0.4103	L1	0.4344	0.4032	N.I	0.4082	0.3922] "	0.3819	0.3776
	0.4465	0.4071		0.4221	0.3984		0.3941	0.3848		0.3697	0.3697
	0.4465	0.4071		0.4221	0.3984		0.3941	0.3848		0.3697	0.3697
M2	0.4586	0.4103	ا را	0.4344	0.4032	K2	0.4082	0.3922] ₁₂	0.3819	0.3776
IVIZ	0.4483	0.3918	L2	0.4260	0.3853	NZ	0.4017	0.3752	- J2	0.3783	0.3646
	0.4373	0.3893		0.4147	0.3814		0.3889	0.3690		0.3670	0.3578
	0.4687	0.4289		0.4430	0.4212		0.4146	0.4089	J3	0.3870	0.3958
M3	0.4813	0.4319	L3	0.4562	0.4260	1/2	0.4299	0.4165		0.4006	0.4044
IVIS	0.4700	0.4126] [3	0.4465	0.4071	K3	0.4221	0.3984] 33	0.3941	0.3848
	0.4586	0.4103		0.4344	0.4032		0.4082	0.3922		0.3819	0.3776
	0.4586	0.4103		0.4344	0.4032		0.4082	0.3922		0.3819	0.3776
M4	0.4700	0.4126] ,,	0.4465	0.4071	K4	0.4221	0.3984	J4	0.3941	0.3848
IVI4	0.4593	0.3944	L4	0.4373	0.3893	N4	0.4147	0.3814] 34	0.3898	0.3716
	0.4483	0.3918		0.4260	0.3853		0.4017	0.3752		0.3783	0.3646
	0.4656	0.4174		0.4413	0.4107		0.4148	0.4000		0.3881	0.3879
Х3	0.4573	0.4154	Х3	0.4325	0.4075	Х3	0.4047	0.3950	X3 (3 SDCM)	0.3791	0.3823
(3 SDCM)	0.4510	0.4032	(3 SDCM)	0.4274	0.3958	(3 SDCM)	0.4012	0.3841		0.3769	0.3724
	0.4583	0.4049		0.4350	0.3984		0.4098	0.3883		0.3845	0.3770

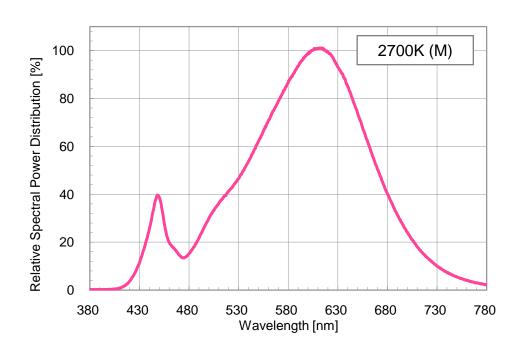
^{*} K color bin is not available but can be developed within 1 month based on demand.

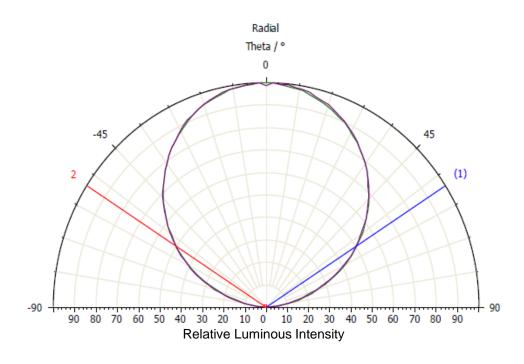

■ Forward Current vs. Forward Voltage

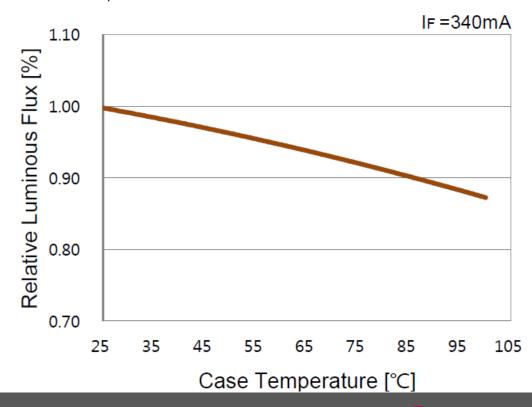


Relative Luminous Flux vs. Forward Current

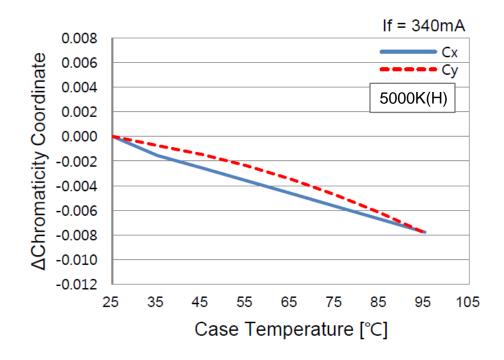


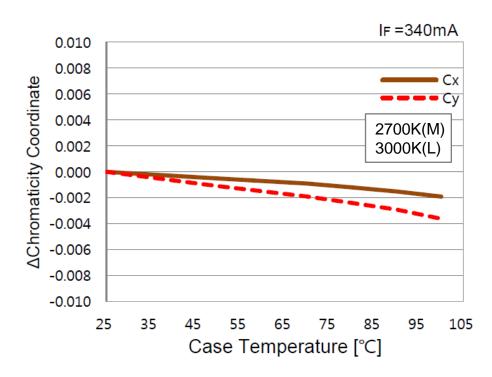

Spectrum


Spectrum

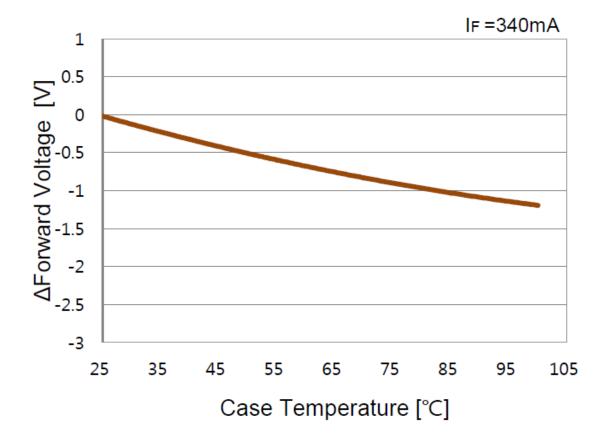


Radiation Characteristics


If= 340mA, Ta=25 °C



■ Luminous Flux vs. Temperature



Chromaticity Coordinate vs. Temperature

■ Forward Voltage vs. Temperature

9. Reliability Test Items and Conditions

9-1. Failure Criteria

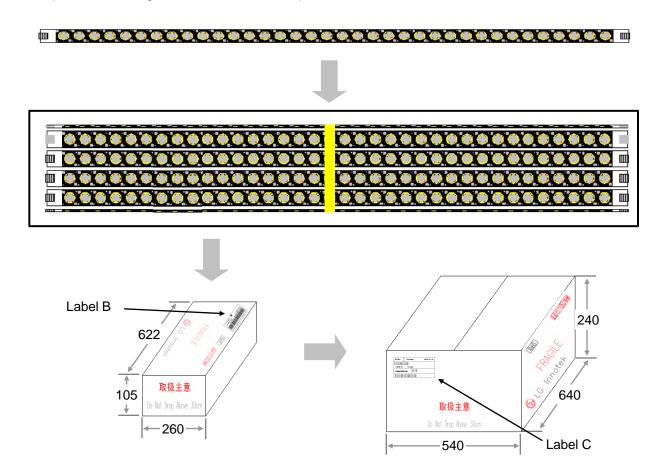
Item	Symbol	Test Condition	Limit	
пеш	Symbol	rest Condition	Min	Max
Forward Voltage	Vf	If = 340mA	-	S × 1.1
Luminous Flux	Ф۷	If = 340mA	S × 0.7	-

^{*} S : Initial Value

9-2. Reliability Test

No	ltem	Test Condition	Test Hours/ Cycles	SPL No	Ac/ Re
1	Steady State Operation	Ta=25℃, I _F =340 [mA]	1000 hrs	22 pcs	1/0
2	High Temperature / Humidity Steady State Operation	Ta=85℃,85% RH, I _F =340 [mA]	1000 hrs	22 pcs	1/0
3	High Temperature Steady State Operation	Ta=85˚ℂ, I _F =340 [mA]	1000 hrs	22 pcs	1/0
4	Low Temperature Steady State Operation	Ta= -30 ℃ , I _F =340 [mA]	1000 hrs	22 pcs	1/0
5	High Temperature Storage	100℃	1000 hrs	22 pcs	1/0
6	Low Temperature Storage	-40℃	1000 hrs	22 pcs	1/0
7	Thermal Shock	100°C (30min) ~ -40°C (30min)	100 cycles	22 pcs	1/0
8	Vibration	200m/s²,100~2000Hz (sweep 4min) 48min, 3 directions	4 times	22 pcs	1/0
9	Electrostatic Discharge (HBM, ±2kV)	R1:10ΜΩ, R2:1.5KΩ 77	3 times Negative/ Positive	22 pcs	1/0

10-1. Tube Outline Dimension


• Tube Packing Material: PET (Polyethylene Terephthalate)

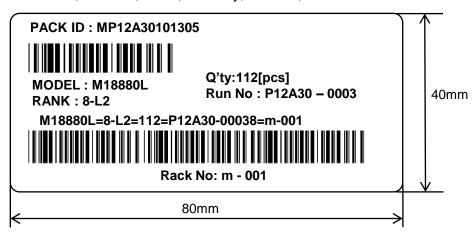
• Tube Dimension : 540 × 16.3 × 5.5mm

• Units per Tube : 36 units

10-2. Packing Specifications

A rubber band ties 10 tubes (with a total of 360 units) that are then packed in a vacuum sealed packing bag along with desiccants (Silica Gel). 10 packing bags (with a maximum total of 3,600 units) are packed in an inner box where 4 inner boxes are placed into an outer box (for a maximum grand total of 14,400 units).

10-3. MES Label Structure

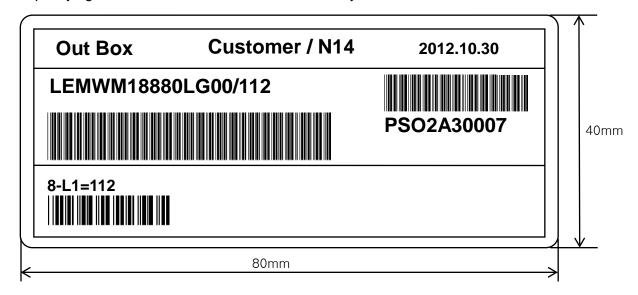

※. Label A (Tube Label)

Model (Company Name – manufacturing location), Date, Rank, LOT ID, Quantity

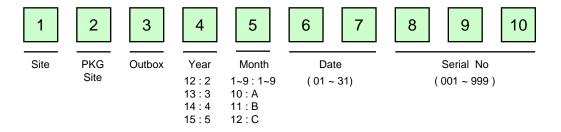
Model (LGIT - P): LEMWM11380LZ00 Q'ty (pcs): 36
Date : 2012 - 10 - 30
Rank : 3-L3
LOT ID : PPMWM112AVT001100

90mm

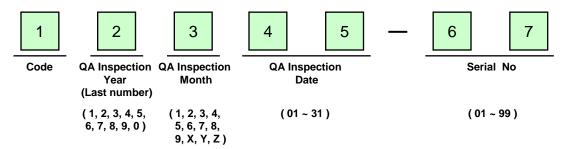
Label B (Packing Bag)
 PACK ID, MODEL, Rank, Quantity, Run No, Rack No.



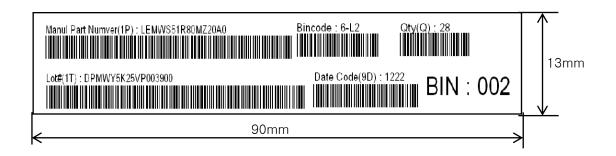
Label C (Inner Box Label)
 INNER BOX ID, MODEL, Quantity, Date, Rank



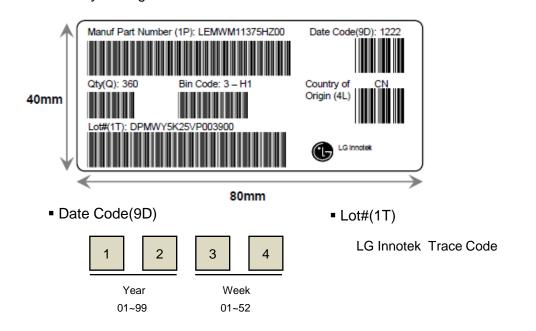
10-3. MES Label Structure


Label D (Out Box Label)
 Specifying Customer, Date, Model Name, Quantity, Customer Part no, Outbox ID

Outbox ID. indication

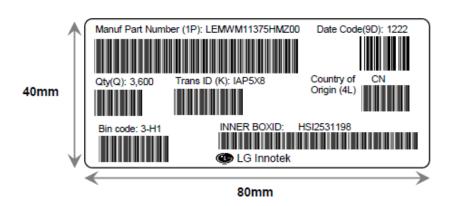


Lot No. indication

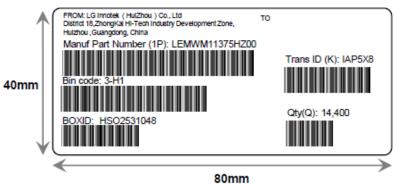


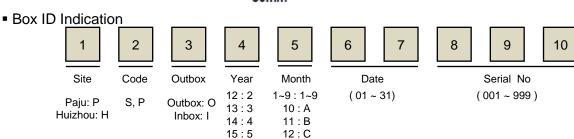
10-4. NEDA Label Structure

**. Label A (Tube label)
Specifying Manufacturing Part Number, Quantity, Bin Code, Lot, Date Code


Label B (Sealing label)
 Specifying Manufacturing Part Number, Quantity, Bin Code, Lot, Date Code
 and Country of Origin

10-4. NEDA Label Structure


Label C (Inner)


Specifying Manufacturing Part Number, Quantity, Bin Code, Trans ID, Date Code, Country of Origin and Inner Box ID

Label C (Outer)

Specifying Manufacturing Site, Customer Address, Manufacturing Part Number, Bin Code, Box ID, Trans ID and Quantity

11-1. Overcurrent Protection

- Customers must apply current limiting devices for protection such as resistors or constant current LED drivers. Otherwise, a slight variation in voltage will cause a significant current shift where a catastrophic failure may occur.
- LG Innotek is not responsible for any damages or accidents caused if the operating or storage conditions exceed the absolute maximum ratings recommended in this document.

11-2. During Storage

- Proper temperatures and RH conditions for storage are 5 $^{\circ}$ C ~ 35 $^{\circ}$ C and RH 60%.
- Do not open the moisture-proof bag until the products are ready to be used.
- Store the products in a moisture-proof bag with desiccant (Silica gel) after opening.
- The products should be used within 168 hours after opening the bag under the recommended storage conditions.
- The products must be baked to remove moisture before using if the silica gel loses its color. Conditions for baking are 60 ± 5 °C, 20% (RH) and 24 hours maximum.

11-3. During Usage

- The product should not be directly exposed to environments containing hazardous substances.
- Please confirm performance and reliability properly if used under any of the following conditions:
 - Environments with a significant amount of moisture, dew condensation, briny air, and corrosive gas (CI, H2S, NH3, SO2, NOX, etc.)
 - · Direct sunlight, outdoor exposure, and dusty locations
 - · Water, oil, medical fluid, and organic solvents
- Avoid rapid transitions in ambient temperature, especially in high humidity environments where condensation can occur.
- For designing a circuit, the current through the product must not exceed the absolute maximum rating.

11-4. Cleaning

- Avoid cleaning, since the silicone resin is eroded by the cleaning process.

11-5. Thermal Management

- Thermal design of the end product is of paramount importance.
- Please consider how the heat generated by the product will be managed when developing the system design.
- The generation of heat is greatly impacted by the input power, the junction to case thermal resistance of the COB and the performance of the thermal interface material combined with the proximity of other components in the system.
- It is necessary to make sure that the product is operated within the maximum ratings provided in the specifications.

11-6. Static Electricity

- If a voltage exceeding the absolute maximum rating is applied to the COBs, it will damage or destroy the product. Since the COBs are sensitive to static electricity and surge, it is strongly recommended to use a wristband or anti-electrostatic glove when handling the COBs where all devices including the equipment and machinery must be properly grounded.
- It is recommended that precautions should be taken against surge voltage to the equipment that mounts the COB.
- Damaged COBs will show some unusual characteristics such as significant increased in leakage current, lower turn-on voltage, or malfunctioning at a low current level.
- When examining the final products, it is recommended to verify whether the assembled COBs are damaged by static electricity. Damaged COBs from static electricity can be identified by conducting a light-on test or a forward voltage test at a low current.

11-7. Recommended Circuits

- The current through each LED must not exceed the absolute maximum rating when designing the circuits.
- The LED driver must be designed to operate the COB by forward bias only. Reverse voltages can damage the COB.
- A constant current LED driver is recommended to power the COB.

11-8 Recommended Soldering Conditions

- First bullet should be: Manual soldering is recommended.
- Lead-free soldering shall be implemented using a maximum 40W soldering bit under the conditions of 350° C or less within 3.5 seconds.

11-9. Safety Guideline for Human Eyes

- Do not directly look at the light when the LEDs are on.
- Proceed with caution to avoid the risk of damage to the eyes when examining the LEDs with optical instruments.

11-10. Manual Handling

- It is recommended to wear anti-static plastic gloves to prevent damage from static electricity and dirt or other contaminants.
- When using tweezers, please handle the aluminum substrate part and avoid touching the resin part.
- For mounting, please handle the side of the aluminum part.

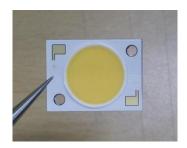


Fig.3 Proper Handling of the COB Using Tweezers

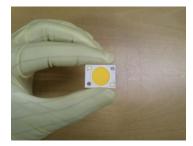
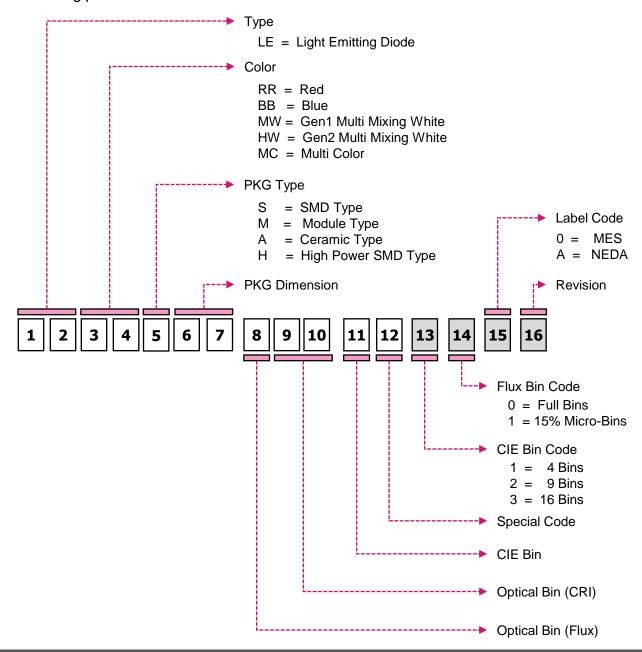



Fig.4 Proper Handling of the COB Using Anti-Static Gloves

Appendix. Nomenclature of Package

All COBs are tested and sorted by color, luminous flux and forward voltage where every COB in a tube has only a single color bin, luminous flux bin and forward voltage bin. However, the forward voltage bin information is not captured in the part number nomenclature.

A 16-digit part number is required when orders are placed. LG Innotek leverages the following part number nomenclature.

Datasheet							
MODEL	LEMWM18680 Series	DOCUMENT No.	-				
REG.DATE	2013.02.15	REV. No.	0.0				
REV.DATE	2013.02.15	PAGE	-				

History of Revisions

Revision	Date	Contents Revision	Remark
Rev. 0.0	13.02.15	New Establishment	