# CFPT-9050 Series

## ISSUE 6; 23 DECEMBER 2004

#### **Recommended for New Designs**

#### **Delivery Options**

Please contact our sales office for current leadtimes

#### Description

■ A highly versatile series of surface mountable 14.7 x 9.2 x 6.2mm temperature compensated voltage controlled crystal oscillators (TCVCXOs) for applications where small size and high performance are prerequisites. This oscillator uses C-MAC's latest custom ASIC "Pluto", a single chip oscillator and analogue compensation circuit, capable of sub 0.3 ppm performance. Its wide frequency range, operating temperature range, drive capability, coupled with its high stability and linear frequency pulling make it the ideal reference oscillator. Its ability to function down to a supply voltage of 2.4V and low power consumption makes it particularly suitable for mobile applications

#### **Standard Frequencies**

■ 9.6, 10.0, 12.8, 19.44, 20.0, 38.88, 49.152, 51.84MHz

#### Waveform

- Square HCMOS 15pF load
- Square ACMOS 50pF max. load
- Sinewave 10kΩ // 10pF, AC-coupled
- Clipped sinewave 10kΩ // 10pF, AC-coupled

## **Supply Voltage**

■ Operating range 2.4 to 6.0V, see table

## **Current Consumption**

- HCMOS Typically ≈ 1+ Frequency(MHz)\*Supply(V)\*{Load(pF)+ 15}\*10³ mA eg. 20MHz, 5V, 15pF ≈ 4mA
- ACMOS Typically ≈ 1+ Frequency(MHz)\*Supply(V)\*{Load(pF)+ 23}\*10<sup>-3</sup> mA
- Sinewave, 6 to 12 mA depending on frequency
- Clipped Sinewave, Typically ≈ 1+ Frequency(MHz)\*1.2\*{Load(pF)+ 30}\*10<sup>-3</sup> mA

## **Package Outline**

■ 14.7 x 9.2 x 6.2mm SMD (Surface Mount Device)

#### Ageing

- ± 1ppm maximum in first year
- ± 3ppm maximum for 10 years
- ± 1ppm maximum after reflow

## Frequency Stability

- Temperature: see table
- Typical Supply Voltage Variation ± 10% ≤ ± 0.2 ppm\*
- Typical Load Coefficient 15pF ± 5pF ≤ ± 0.2 ppm\*
- \* Depending on frequency and output type

#### Frequency Adjustment

- Three options with external Voltage Control applied to pad 1:
  - A Ageing adjustment: ≥ ± 5ppm (Standard Option)
  - B No frequency adjustment. Initial calibration @ 25°C < ± 0.5 ppm
  - C High Pulling ± 10ppm to ± 50ppm can be available depending on frequency and stability options.

    Please consult our sales office

Linearity ≤ 1%
 Slope Positive
 Input resistance > 100kΩ
 Modulation bandwidth > 2kHz

Standard control voltage ranges:

Without reference voltage  $-Vs = 5.0V + 2.5V \pm 2V$ Without reference voltage  $-Vs = 3.3V + 1.65V \pm 1V$ With reference voltage -Vc = 0V to Vref

# Reference Voltage, Vref (HCMOS/ACMOS only)

- Optional reference voltage output on pad 5, suitable for potentiometer supply or DAC reference.
  - 1. No output (Standard option)
  - 2. 2.2V, for Min. Vs > 2.4V
  - 3. 2.7V, for Min. Vs > 3.0V
  - 4. 4.2V, for Min. Vs > 4.5V

Maximum load current (mA) = Vref/10

For manual frequency adjustment (HCMOS/ACMOS output only) connect an external  $50k\Omega$  potentiometer between pad 5 (Reference Voltage) and pad 3 (GND) with wiper connected to pad 1 (Voltage Control). Please specify reference voltage as a part of the ordering code.

Note: Please contact our sales office if a reference voltage is required in combination with sine or clipped sinewave output

#### Tri-state

- Pad 2 open circuit or > 0.6Vs output enabled
- < 0.2VsTri-state</p>
- When Tri-stated, the output stage is disabled for all output options, but the oscillator and compensation circuit are still active (Current consumption < 1mA)</li>

## **Storage Temperature Range**

■ -55 to 125°C

#### **Environmental Specification**

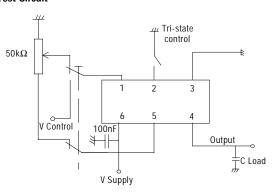
- Vibration: IEC 60068-2-6 Test Fc Procedure B4, 10-60Hz
   1.5mm displacement, 60 –2000Hz at 98.1 ms²,
   30 minutes in each of three mutually perpendicular axes at 1 octave per minute
- Shock: IEC 60068-2-27Test Ea, 980ms<sup>2</sup> acceleration for 6ms duration, 3 shocks in each direction along three mutually perpendicular axes
- Soldering: SMD product suitable for Convection Reflow soldering. See recommended reflow profiles on last page
- Solderabiltiy: MIL-STD-202, Method 208, Category 3
- Marking: Laser Marked

## **Marking Includes**

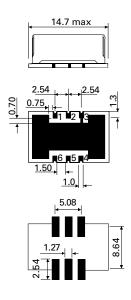
- C-MAC
- Part Number (E and four digits)
- Frequency (MHz)
- Pad 1 / Static sensitivity identifier (Triangle)
- Date code and manufacturing location code (YYWWL)

CMAC E0000 13.0MHz \( \Delta \text{ YYWWL} \)

# **Minimum Order Information Required**


Frequency + Model Number + Frequency Stability vs
 Operating Temperature Range Code + Reference Voltage
 Code + Frequency Adjustment Code + Lead-free version
 code

## OR

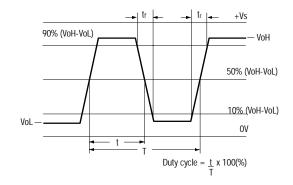

 Discrete part number for repeat orders (Discrete part numbers suitable for Lead-free soldering have a 'LF' suffix, e.g. E3131LF)

Please supply full information for non-standard options, if required

# Test Circuit



## Outline in mm - (scale 1:1)






#### Pad Connections

- 1 Voltage Control (optional-if not used do not connect)
- 2 Tri-state control
- 3 GND
- 4 Output
- 5 Vref(optional-HCMOS/ACMOS only, if not used do not connect)
  - +Vs

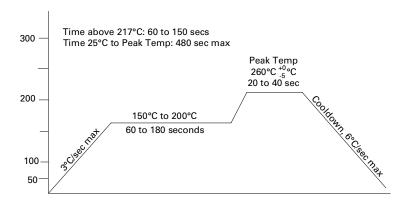
## **Output Waveform - HCMOS**



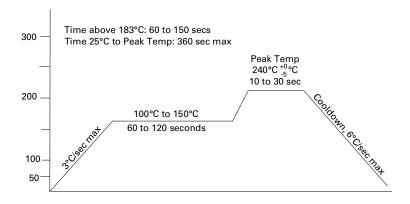
# Phase Noise (typical figures)

| Frequency | Frequency offset from carrier: 10Hz | Frequency offset from carrier: 100Hz | Frequency offset from carrier: 1kHz | Frequency offset from<br>carrier: 10kHz | Frequency offset from carrier: 100kHz |
|-----------|-------------------------------------|--------------------------------------|-------------------------------------|-----------------------------------------|---------------------------------------|
| 13.0MHz   | –95 dBc/Hz                          | -120 dBc/Hz                          | -135 dBc/Hz                         | -140 dBc/Hz                             | -145 dBc/Hz                           |

# Electrical Specification - limiting values when measured in test circuit


| Frequency Range      | Supply Voltage | Output Waveform            | Output levels                             | Rise Time(tr) | Fall Time (tf) | Duty Cycle | Model Number |
|----------------------|----------------|----------------------------|-------------------------------------------|---------------|----------------|------------|--------------|
| 1.0MHz to<br>50.0MHz | 3.3V±10%       | Square HCMOS<br>15pF       | Voh ≥ 90% Vs<br>Vol ≤ 10% Vs              | 8ns           | 8ns            | 45/55%     | CFPT-9058    |
| 1.0MHz to<br>50.0MHz | 5.0V±10%       | Square HCMOS<br>15pF       | $Voh \geq 90\% \ Vs$ $Vol \leq 10\% \ Vs$ | 7ns           | 7ns            | 45/55%     | CFPT-9051    |
| 8.0MHz to<br>50.0MHz | 3.3V±10%       | Sine 10kΩ//10pF            | ≤20.0MHz: ≥1.0 Vpp<br>>20.0MHz: ≥0.5Vpp   | _             |                | _          | CFPT-9059    |
| 8.0MHz to<br>50.0MHz | 5.0V±10%       | Sine 10kΩ//10pF            | ≤20.0MHz: ≥1.0 Vpp<br>>20.0MHz: ≥0.5Vpp   | _             |                | _          | CFPT-9053    |
| 1.0MHz to<br>80.0MHz | 3.3V±10%       | Square ACMOS<br>15pF       | Voh ≥ 90% Vs<br>Vol <u>&lt;</u> 10%Vs     | 3ns           | 3ns            | 45/55%     | CFPT-9060    |
| 1.0MHz to<br>80.0MHz | 5.0V±10%       | Square ACMOS<br>15pF       | Voh ≥ 90% Vs<br>Vol ≤ 10%Vs               | 2ns           | 2ns            | 45/55%     | CFPT-9055    |
| 8.0MHz to<br>50.0MHz | 3.3V±10%       | Clipped Sine<br>10kΩ//10pF | Vpk-pk ≥ 0.8V                             | _             |                | _          | CFPT-9061    |
| 8.0MHz to<br>50.0MHz | 5.0V±10%       | Clipped Sine<br>10kΩ//10pF | Vpk-pk ≥ 0.8V                             | _             |                | _          | CFPT-9057    |

# Frequency Stability Available Over Operating Temperature Ranges


| Operating                                                                                                                 | Frequency Stabilities Vs Operating Temperature Range |          |          |         |         |         |  |  |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------|----------|---------|---------|---------|--|--|
| Temperature<br>Range                                                                                                      | ±0.3ppm                                              | ±0.5ppm  | ±1.0ppm  | ±1.5ppm | ±2.0ppm | ±2.5ppm |  |  |
| 0 to 50°C                                                                                                                 | Code AP                                              | Code EP  | Code FP  | Code CP | Code GP | Code HP |  |  |
| 0 to 70°C                                                                                                                 | Code AC                                              | Code EC  | Code FC  | Code CC | Code GC | Code HC |  |  |
| –20 to 70°C                                                                                                               | Code AS*                                             | Code ES  | Code FS  | Code CS | Code GS | Code HS |  |  |
| −30 to 75°C                                                                                                               |                                                      | Code EU  | Code FU  | Code CU | Code GU | Code HU |  |  |
| –40 to 85°C                                                                                                               |                                                      | Code EX* | Code FX  | Code CX | Code GX | Code HX |  |  |
| –55 to 105°C                                                                                                              |                                                      |          | Code FY* | Code CY | Code GY | Code HY |  |  |
| Ordering Example  10.0MHz CFPT-9051 CS 1 A LF  Frequency  Model number  Frequency Stability Vs Operating Temperature Code |                                                      |          |          |         |         |         |  |  |
| Reference Voltage Code  Frequency Adjustment Code —                                                                       |                                                      |          |          |         |         |         |  |  |
| Lead-Free Version————————————————————————————————————                                                                     |                                                      |          |          |         |         |         |  |  |

Note:\* Codes may not be available for all frequencies

# Lead Free Reflow Soldering Profile



# Tin / Lead Reflow Soldering Profile

