
Model: FXU-LC53 SERIES

LVDS 5 x 3.2mm 3.3V Oscillator

Freq: 0.016 MHz to 1.5GHz

Features

- ULTRA Low Jitter
- Low Cost
- XPRESS Delivery
- Frequency Resolution to six decimal places
- Stabilities to ± 20 PPM
- -20 to +70°C or -40 to +85°C operating temperatures
- Tri-State Enable / Disable Feature
- Industry Standard Package, Footprint & Pin-Out
- Fully RoHS compliant
- Gold over Nickel Termination Finish
- Serial ID with Comprehensive Traceability

For more information -- Click on the drawing

Description

The Fox XpressO-ULTRA Crystal Oscillator is a breakthrough in configurable Frequency Control Solutions. XpressO-ULTRA utilizes a family of proprietary ASICs, designed and developed by Fox, with a key focus on noise reduction technologies.

The 4th order Delta Sigma Modulator reduces noise to the levels that are comparable to traditional Bulk Quartz and SAW oscillators. The ASICs family has the ability to select the output type and supply voltage.

With the XPRESSO-ULTRA lead-time, low cost, low noise, wide frequency range, excellent ambient performance, XPRESSO-ULTRA is an excellent choice over the conventional technologies.

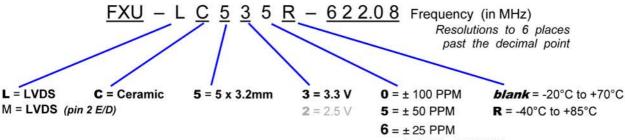
Finished XpressO-ULTRA parts are 100% final tested.

Applications

- ANY application requiring a high performance LVDS oscillator
- SONET
- Ethernet
- Storage Area Network
- Broadband Access
- Microprocessors / DSP / FPGA
- Industrial Controllers
- Test and Measurement Equipment

Contents

	page
Model Selection & Part Number Guide	2
Electrical Characteristic	3
Absolute Maximums	3
Output Wave Characteristics	4
Phase Noise	5
Jitter	5
Pin Assignment	6
Recommended Circuit	6
Reflow	6
Mechanical Drawing and Pad Layout	7
Tape and Reel Specification	8
Label	8
Traceability - LOT Number & Serial Identification	9
Mechanical Test	10
Other XPRESSO Series Links	11
Fox Contact Information	11

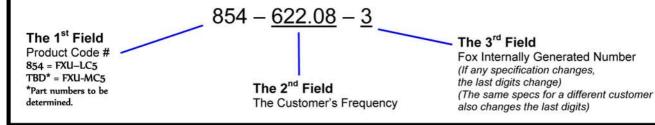


FXU-LC53 Series

Model Selection Guide & Fox Part Number

STEP #1: Customer selects the Model Description and provides to Fox Customer Service

Model Description



6 = ± 25 PPM (0.016 to 212.5 MHz @ -40 to +85°C)

 $8 = \pm 20 \text{ PPM}$ (-20°C to +70°C)

STEP #2: The Fox Customer Service team provides a customer specific Part Number for use on their Bill Of Materials (BOM).

Fox Part Number (The assigned Fox Part Number must be on the BOM – not the above Model Description) (This will ensure receipt of the proper part)

This example, FXU-LC535R-622.08 = LVDS Output, Ceramic, 5 x 3.2mm Package, 3.3V, ±50 PPM Stability, -40 to +85°C Temperature Range, at 622.08 MHz

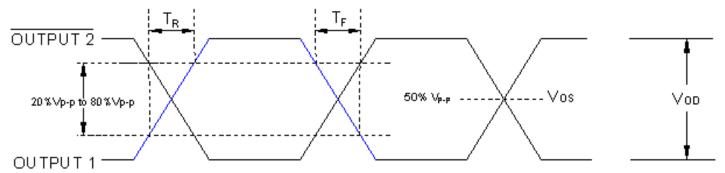
FXU-LC53 Series

Electrical Characteristics			
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Frequency Range	Fo		0.016 MHz to 1.5 GHz
Frequency Stability 1			100, 50, 25 ² , 20 ³ , PPM
	To	Standard operating 0.016 MHz to 1.5 GHz	-20°C to +70°C
Temperature Range		Optional operating 0.016 MHz to 1.0 GHz	-40°C to +85°C
	T _{STG}	Storage	-55°C to +125°C
Supply Voltage	V _{DD}	Standard	3.3 V ± 5%
Input Current (@ Standard Load)	I _{DD}	100 MHz ~ 156.25 MHz	79 mA Typical
Output Load		Standard	100 Ohms Typical
Start-Up Time	Ts		10 mS
Output Enable / Disable Time			100 nS
Moisture Sensitivity Level	MSL	JEDEC J-STD-020	1
Termination Finish			Au

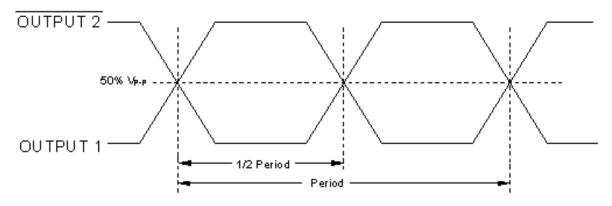
Note 1 – Stability is inclusive of 25°C tolerance, operating temperature range, input voltage change, load change, aging, shock and vibration. Note 2 - ±25 PPM statility @ -40°C to +85°C available 0.016 MHz to 212.5 MHz.

Note 3 - ±20 PPM stability available -20°C to +70°C.

Absolute Maximum Ratings (Useful life may be impaired. For user guidelines only, not tested)			
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Input Voltage	V _{DD}		-0.5V to +5.0V
Operating Temperature	T _{AMAX}		–55°C to +85°C
Storage Temperature	T _{STG}		-55°C to +125°C
Junction Temperature			125°C
ESD Sensitivity	HBM	Human Body Model	1 kV

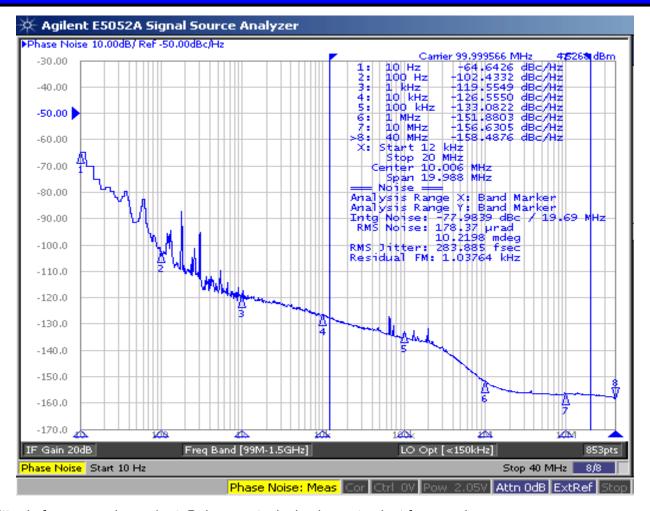


FXU-LC53 Series


Output Wave Characteristics			
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Differential Output Voltage	V _{OD}	100 MHz ~ 156.25 MHz	+0.5V Typical
Output Offset Voltage	Vos	100 MHz ~ 156.25 MHz	+1.25V Typical
Output Symmetry @ 50% V _{P-P} Level (See Drawing Below)		100 MHz ~ 156.25 MHz	49.5% ~ 50.5% Typical
Output Enable Note1 (PIN#1) Voltage	V _{IH}		≥ 70% V _{DD}
Output Disable Note1 (PIN # 1) Voltage	V _{IL}		≤ 30% V _{DD}
Cycle Rise Time (20%~80%V _{P.P} - See Drawing Below)	T _R	100 MHz ~ 156.25 MHz	275 pS Typical
Cycle Fall Time (80%~20%V _{P-P} - See Drawing Below)	T _F	100 MHz ~ 156.25 MHz	275 pS Typical

 $^{
m Note1}$ An optional PIN # 2 as Enable / Disable is available — see Model Selection Guide (page 2)

Output Levels / Rise Time / Fall Time Measurements


Oscillator Symmetry Ideally, Symmetry should be 50/50 for 1/2 period – Other expressions are 45/55 or 55/45

FXU-LC53 Series

Phase Noise (typical measurement at 100 MHz)

Jitter is frequency dependent. Below are typical values at select frequencies.

LVDS Phase Jitter & Time Interval Error (TIE)			
Frequency	Phase Jitter (pS) (12kHz to 20MHz)	TIE (pS) (sigma of jitter distribution)	
100 MHz	0.284	2.15	
125 MHz	0.310	2.14	
156.25 MHz	0.332	2.85	

<u>Phase Jitter</u> is integrated from Agilent 5052A Signal Noise Analyzer; measured directly into 50 ohm input; $V_{DD} = 3.3V$.

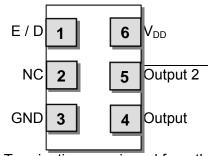
<u>TIE</u> was measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software; $V_{DD} = 3.3V$.

Per **MJSQ** spec (Methodologies for Jitter and Signal Quality specifications)

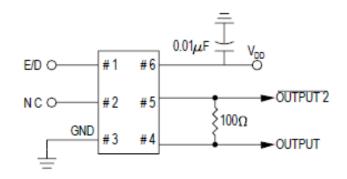
LVDS Random & Deterministic Jitter Composition				
Frequency	Random (Rj)	Deterministic (Dj)	Total Jitter (Tj) (pS - (14 x Rj) + Dj)	
100 MHz	1.2	6.3	23.7	
125 MHz	1.0	5.8	20.0	
156.25 MHz	1.25	7.7	25.6	

Rj and Dj, measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software.

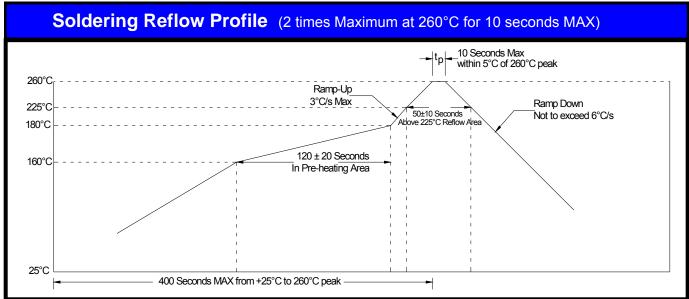
Per MJSQ spec (Methodologies for Jitter and Signal Quality specifications)



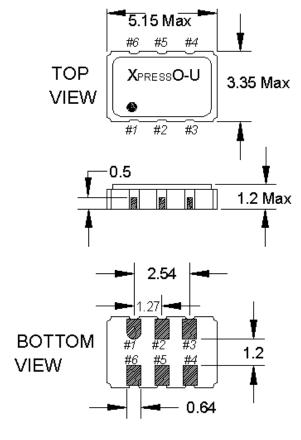
FXU-LC53 Series


Pin Description and Recommended Circuit				
Pin#	Name	Type	Function	
1	E/D ¹	Logic	Enable / Disable Control of Output (0 = Disabled)	
2	NC 2		No Connection – Leave OPEN	
3	GND	Ground	Electrical Ground for V _{DD}	
4	Output	Output	LVDS Oscillator Output	
5	Output 2	Output	Complementary LVDS Output	
6	V_{DD}^{3}	Power	Power Supply Source Voltage	

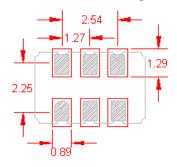
NOTES:


- Includes pull-up resistor to V_{DD} to provide output when the pin (1) is No Connect. (Also see note 2) An optional pin # 2 Enable / Disable is available.
- Installation should include a $0.01\mu F$ bypass capacitor placed between V_{DD} (Pin 6) and GND (Pin 3) to minimize power supply line noise.

Terminations as viewed from the Top NOTE: XPRESSO-ULTRA LVDS XOs are designed to fit on Industry Standard, 6 pad layouts


Enable / Disable Control	
Pin # 1 (state)	Output (Pin # 4, Pin # 5)
OPEN (No Connection)	ACTIVE Output
"1" Level V _{IH} ≥70% V _{DD}	ACTIVE Output
"0" Level $V_{IL} \le 30\% V_{DD}$	High Impedance

FXU-LC53 Series


Mechanical Dimensional Drawing & Pad Layout

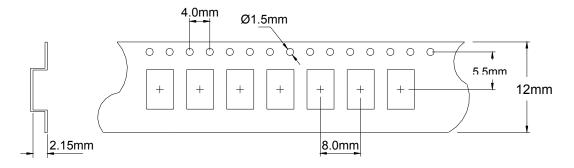
Actual part marking is depicted.

See **Traceability** (pg. 9) for more information

Recommended Solder Pad Layout

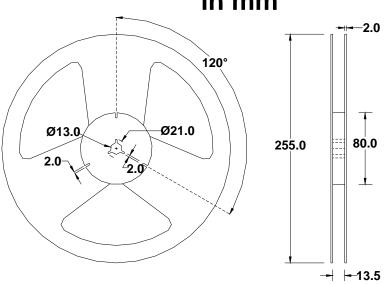
NOTE: XPRESSO-ULTRA LVDS XOs are designed to fit on Industry Standard, 6 pad layouts

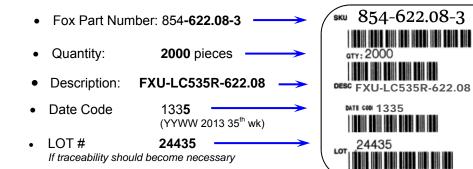
Pin Connections


- #1) E/D
- #4) Output
- #2) NC
- #5) Output 2
- #3) GND
- #6) V_{DD}

Drawing is for reference to critical specifications defined by size measurements. Certain non-critical visual attributes, such as side castellations, reference pin shape, etc. may vary

FXU-LC53 Series


Tape and Reel Dimensions


1k Reel Dimensions in mm

Ø13.0 Ø21.0 178.0 62.0 - 13.5

2k Reel Dimensions in mm

Labeling (Reels and smaller packaging are labeled with the below)

Covered by one or more of listed

U.S. Patents: 6,664,860, 5,960,403
5,960,405 5,952,890 6,188,290 9
Foreign Patents:
China Zl. 98802217.6 Nexico 232
Foreign Patents:
China Zl. 98802217.6 Nexico 232
Singapore 67081; 67082,
EP 0958052 Hong Kong MK1026079
Relaysia IM-118540-A
Philippines Patents: 1-1998-00024
US and Foreign Patents Pending
Xpress0 0 is a Registered Trademark of Fox Electronics

An additional identification code is contained internally if tracking should ever be necessary

FXU-LC53 Series

Traceability - LOT Number & Serial Identification

LOT Number

The LOT Number has direct ties to the customer purchase order. The LOT Number is marked on the "Reel" label, and also stored internally on non-volatile memory inside the XPRESSO-ULTRA part.

XPRESSO-ULTRA parts that are shipped Tape and Reel, are also placed in an Electro Static Discharge (ESD) bag and will have the LOT Number labeled on the exterior of the ESD bag.

It is recommended that the XPRESSO-ULTRA parts remain in this ESD bag during storage for protection and identification.

If the parts become separated from the label showing the LOT Number, it can be retrieved from inside one of the parts, and the information that can be obtained is listed below:

- Customer Purchase Order Number
- Internal Fox Sales Order Number
- Dates that the XPRESSO-ULTRA part was shipped from the factory
- The assigned customer part number
- The specification that the part was designed for

Serial Identification

The Serial ID is the individualized information about the configuration of that particular XPRESSO-ULTRA part. The Serial ID is unique for each and every XPRESSO-ULTRA part, and can be read by special Fox equipment.

With the Serial ID, the below information can be obtained about that individual, XPRESSO-ULTRA part:

- Equipment that the XPRESSO-ULTRA part was configured on
- Raw material used to configure the XPRESSO-ULTRA part
- Traceability of the raw material back to the foundries manufacturing lot
- Date and Time that the part was configured
- Any optimized electrical parameters based on customer specifications
- Electrical testing of the actual completed part
- Human resource that was monitoring the configuration of the part

Fox has equipment placed at key Fox locations World Wide to read the Lot Identification and Serial Number of any XPRESSO-ULTRA part produced and can then obtain the information from above within 24 hours

FXU-LC53 Series

Mechanical Testing

Parameter	Test Method
Mechanical Shock	MIL-STD-202 Method 213 Condition C
Mechanical Vibration	MIL-STD-202 Method 204 5g's for 20 minutes 12 cycles of each 3 orientations: X, Y, Z
High Temperature Operating Life (HTOL)	Under Power @ 125°C for 1000 Hours
Hermetic Seal	He pressure: 4 ±1 kgf / cm ² 2 Hour soak

FXU-LC53 Series

Other XPRESSO Series Links

XPRESSO Brochure

Crystal Oscillators

HCMOS 5 x 3.2mm 3.3V XO 0.75 to 250MHz

HCMOS 7 x 5mm 3.3V XO 0.75 to 250MHz

LVPECL 5 x 3.2mm 3.3V XO 0.75 to 1.35GHz

LVPECL 7 x 5mm 3.3V XO 0.75 to 1.35GHz

LVDS 5 x 3.2mm 3.3V XO 0.75 to 1.35GHz

LVDS 7 x 5mm 3.3V XO 0.75 to 1.35GHz

Voltage Controlled Crystal Oscillators

HCMOS 5 x 3.2mm 3.3V VCXO 0.75 to 250MHz

HCMOS 7 x 5mm 3.3V VCXO 0.75 to 250MHz

LVPECL 5 x 3.2mm 3.3V VCXO 0.75 to 1.35GHz

LVPECL 7 x 5mm 3.3V VCXO 0.75 to 1.35GHz

LVDS 5 x 3.2mm 3.3V VCXO 0.75 to 1.35GHz

LVDS 7 x 5mm 3.3V VCXO 0.75 to 1.35GHz

Main Website www.foxonline.com

Patent Numbers:

US 6,664,860, US 5,960,403, US 5,952,890; US 5,960,405; US 6,188,290;
Foreign Patents: R.S.A. 98/0866, R.O.C. 120851; Singapore 67081, 67082; EP 0958652
China ZL 98802217.6, Malaysia MY-118540-A, Philippines 1-1998-000245, Hong Kong #HK1026079, Mexico #232179
US and Foreign Patents Pending

XpressO® Fox Electronics

Contact Information (USA)-Worldwide Headquarters **Fox EMEA** Fox Japan Tel: +44.1283.568153 Tel: +81.3.3374.2079, Tel: 888-GET-2-FOX Email: www.foxonline.com/email.htm Fax: +81.3.3377.5221 Outside US: +1.239.693.0099, Email: www.foxonline.com/email.htm Fax: +1.239.693.1554 Email: www.foxonline.com/email.htm Fox Singapore Tel: +886-2-22073427, Email: www.foxonline.com/email.htm

The above specifications, having been carefully prepared and checked, is believed to be accurate at the time of publication; however, no responsibility is assumed by Fox Electronics for inaccuracies.

