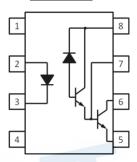


DATASHEET


8 PIN DIP LOW INPUT CURRENT HIGH GAIN SPLIT DARLINGTON PHOTOCOUPLER 6N138 6N139

Features

- High current transfer ratio-2000% typical
- High isolation voltage between input and output (Viso=5000 Vrms)
- Guaranteed performance from 0°C to 70°C
- Pb free and RoHS compliant.
- UL and cUL approved(No. E214129)
- VDE approved (No. 132249)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved

Schematic

Pin Configuration

- 1. No Connection
- 2. Anode
- 3. Cathode
- 4. No Connection
- 5. Gnd
- 6. V_{out}
- 7. V_B
- 8. V_{CC}

Description

The 6N138 and 6N139 devices each consists of an infrared emitting diode, optically coupled to a high gain split Darlington photo detector. They provide extremely high current transfer ratio between input and output, with access to a base terminal to adjust the gain bandwidth. These devices are packaged in an 8-pin DIP package and available in wide-lead spacing and SMD options.

Applications

- Digital logic ground isolation
- RS-232C line receiver
- Low input current line receiver
- Microprocessor bus isolation
- Current loop receiver

Absolute Maximum Ratings (Ta=25℃)

	Parameter		Symbol	Rating	Unit
	Forward current		I _F	20	mA
	Peak forward current (50% duty, 1ms P.W)		I _{FP}	40	mA
Input	Peak transient Current (≤1µs P.W,300pps)		I _{Ftrans}	1	Α
	Reverse voltage		V_{R}	5	V
	Power dissipation		P _{IN}	45	mW
	Power dissipation		Po	100	mW
	Output current		Io	60	mA
Output	Emitter-Base Reverse Voltage		V_{ER}	0.5	V
	Output voltage	6N138 6N139	Vo	-0.5 to 7 -0.5 to 18	V
	Supply voltage	6N138 6N139	V _{CC}	-0.5 to 7 -0.5 to 18	V
Isolation voltage *1		V_{ISO}	5000	V rms	
Operating temperature		T _{OPR}	-40 ~ + 85	°C	
Storage Temperature		T _{STG}	-55 ~ +125	°C	
Soldering temperature *2			T _{SOL}	260	°C

Notes:

^{*1} AC for 1 minute, R.H.= $40 \sim 60\%$ R.H. In this test, pins 1, 2, 3, 4 are shorted together, and pins 5, 6, 7, 8 are shorted together.

^{*2} For 10 seconds

Electrical Characteristics (T_A=0 to 70°C unless specified otherwise Input

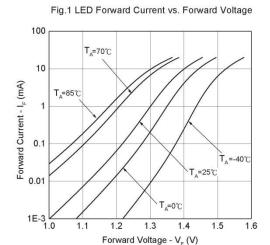
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward voltage	V_{F}	-	1.3	1.7	V	I _F = 1.6mA
Reverse Voltage	V_{R}	5.0	-	-	V	I _R = 10μA, T _A =25°C
Temperature coefficient of forward voltage	$\Delta V_F / \Delta T_A$	-	-1.8	-	mV/°C	I _F =1.6mA

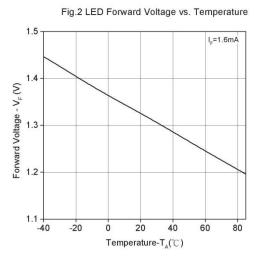
Output

Parameter		Symbol	Min	Тур.	Max.	Unit	Condition
Logic High	6N138		-	0.01	100	пΛ	I _F =0mA,
Output Current	6N139	– I _{ОН} -	-	-	250	μA	V _O =V _{CC} =18V
Logic Low	6N138	- L	_	0.6	1.5	mA	I _F =1.6mA, V _O =Open,
Supply Current	6N139	- I _{CCL}		0.0	1.5	IIIA	V _{CC} =18V
Logic High	6N138	_ 1		0.05	10		I _F =0mA, V _O =Open,
Supply Current	6N139	- ICCH	-	0.05	10	μA	V _{CC} =18V

Transfer Characteristics (T_a=0 to 70°C unless specified otherwise, Vcc=4.5V)

Parameter		Symbol	Min	Тур.	Max.	Unit	Condition
Comment Transfer	6N139		400	2500	-	%	$I_F = 0.5 \text{mA}, V_O = 0.4 \text{V}, V_{CC} = 4.5 \text{V}$
Current Transfer Ratio		CTR	500	2000	-		$I_F = 1.6 \text{mA}, V_O = 0.4 \text{V},$
	6N138	-	300	2000	-		V _{CC} =4.5V
			-	0.05	0.4		$I_F = 0.5 \text{mA}, I_O = 2 \text{mA}, V_{CC} = 4.5 \text{V}$
	6N139 V _{OL}		-	0.09	0.4	V	$I_F = 1.6 \text{mA}, I_O = 8 \text{mA},$ $V_{CC} = 4.5 \text{V}$
Logic Low Output Voltage		V_{OL}	-	0.12	0.4		$I_F = 5mA$, $I_O = 15mA$, $V_{CC}=4.5V$
		_	-	0.17	0.4		$I_F = 12mA, I_O = 24mA, V_{CC}=4.5V$
	6N138		-	0.06	0.4		$I_F = 1.6 \text{mA}, I_O = 4.8 \text{mA}, V_{CC} = 4.5 \text{V}$


Switching Characteristics (T_a=0 to 70°C unless specified otherwise, Vcc=5V)


Paramet	Parameter		Min	Тур.	Max.	Unit	Condition
		_	-	5	25		$I_F = 0.5 \text{mA}$, $R_L = 4.7 \text{k}\Omega$, $T_A = 25^{\circ}\text{C}$
	6N1120		-	-	30		$I_F = 0.5 mA$, $R_L = 4.7 k\Omega$
Propagation Delay Time to	6N139	T _{PHL} -	-	0.2	1	μs	$I_F = 12\text{mA}$, $R_L = 270\Omega$, $T_A = 25^{\circ}\text{C}$
Logic Low (Fig. 13)		· FNL	-	-	2	p.o	$I_F = 12mA$, $R_L = 270\Omega$
(3 ,	6N138	_	-	1.4	10		I_F = 1.6mA , R_L =2.2k Ω , T_A =25°C
			-	-	15		$I_F = 1.6 mA$, $R_L = 2.2 k\Omega$
		_	-	16	60	μs	I_F = 0.5mA , R_L =4.7k Ω , T_A =25°C
	CNIAGO) T _{PLH}	-	-	90		$I_F = 0.5 mA \;,\; R_L \!\!=\!\! 4.7 k\Omega$
Propagation Delay Time to	6N139		-	1.7	7		$I_F = 12\text{mA}$, $R_L = 270\Omega$, $T_A = 25^{\circ}\text{C}$
Logic High (Fig. 13)	6N138		-	-	10		$I_F = 12mA$, $R_L = 270\Omega$
(3 ,			-	8	35		I_F = 1.6mA , R_L =2.2k Ω , T_A =25°C
			-	-	50		$I_F = 1.6 \text{mA}$, $R_L = 2.2 \text{k}\Omega$
Common Mode Transient Immunity at Logic High (Fig. 14) *3		СМн	1,000	L	E	V/µs	$I_F = 0$ mA , $V_{CM} = 10$ Vp-p, $R_L = 2.2$ K Ω , $T_A = 25$ °C
Common Mode Transient Immunity at Logic Low (Fig. 14) *3		CM_L	1,000	-	-	V/µs	$I_F = 1.6 \text{mA} , V_{\text{CM}} = 10 \text{Vp-p},$ $R_L = 2.2 \text{K}\Omega, T_A = 25 ^{\circ}\text{C}$

^{*} Typical values at T_a = 25°C

Typical Electro-Optical Characteristics Curves

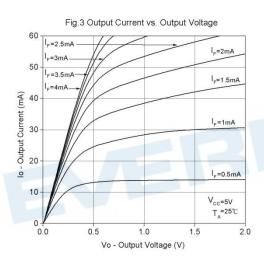
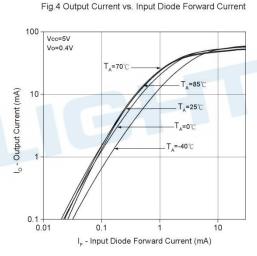
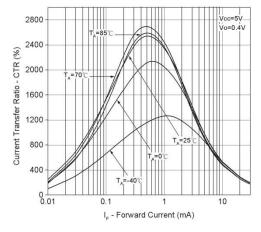
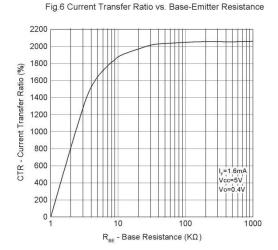





Fig.5 Current Transfer Ratio vs. Forward Current

E

Fig.7 Non-saturated Rise nand Fall Times vs. Load Resistance

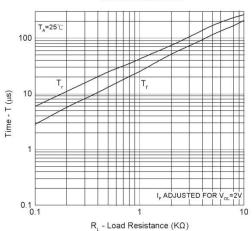


Fig.8 Propagation Delay To Logic Low vs. Base-Emitter Resistance

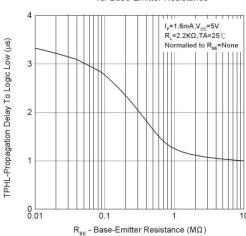


Fig.9 Propagation Delay vs. Input Diode Forward Current

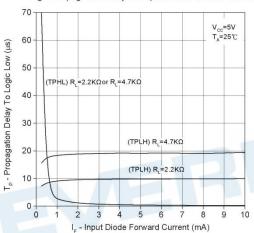


Fig.10 Propagation Delay to Logic Low vs. Pulse Period

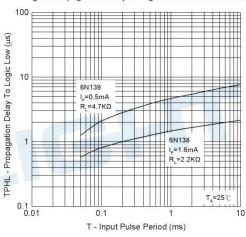


Fig.11 Propagation Delay vs. Temperature

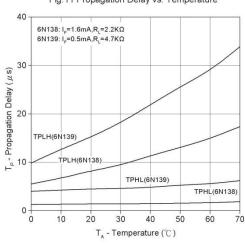


Fig.12 Logic Low Supply Current vs. Input Diode Forward Current

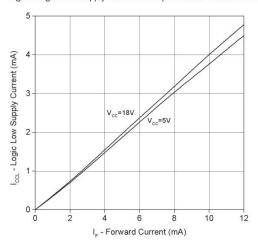


Fig. 13 Switching Time Test Circuit and Waveform

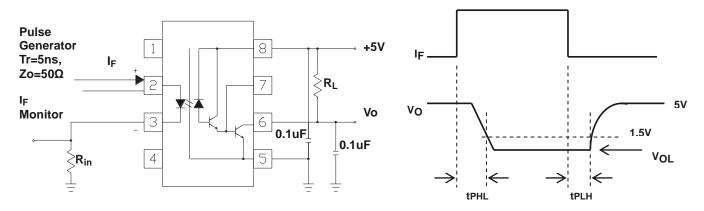
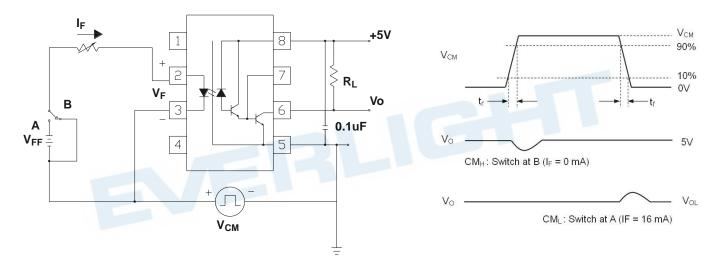



Fig. 14 Common Mode Transient Immunity Test Circuit and Waveform

Note:

*3 Common mode transient immunity in logic high level is the maximum tolerable (positive) dVcm/dt on the leading edge of the common mode pulse signal VCM, to assure that the output will remain in a logic high state (i.e., VO > 2.0V).

Common mode transient immunity in logic low level is the maximum tolerable (negative) dVcm/dt on the trailing edge of the common mode pulse signal, VCM, to assure that the output will remain in a logic low state (i.e., VO < 0.8V).

Order Information

Part Number

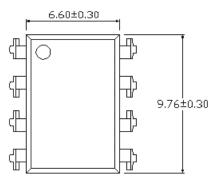
6N13XY(Z)-V

Note

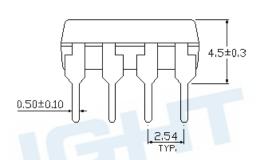
X = Part No. (X = 8 or 9)

Y = Lead form option (S, S1, M or none)

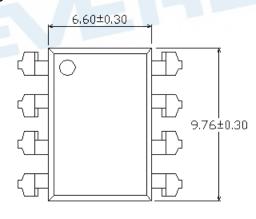
Z = Tape and reel option (TA, TB or none).

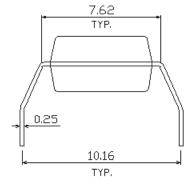

V = VDE (optional)

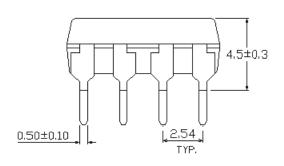
Option	Description	Packing quantity
None	Standard DIP-8	45 units per tube
M	Wide lead bend (0.4 inch spacing)	45 units per tube
S (TA)	Surface mount lead form + TA tape & reel option	1000 units per reel
S (TB)	Surface mount lead form + TB tape & reel option	1000 units per reel
S1 (TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S1 (TB)	Surface mount lead form (low profile) + TB tape & reel option	1000 units per reel
E	VERLIE	



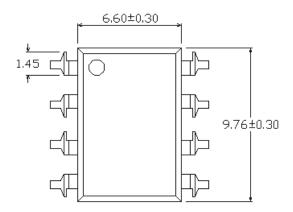
Package Dimension (Dimensions in mm)

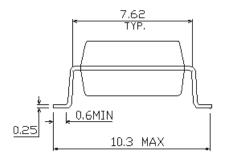

Standard DIP Type

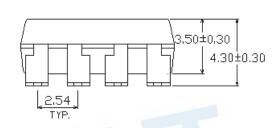


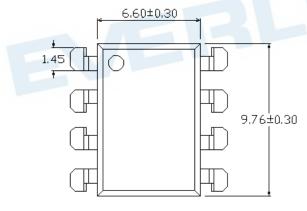


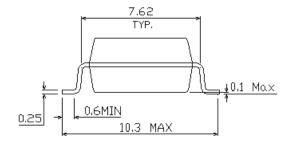
Option M Type

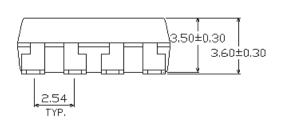




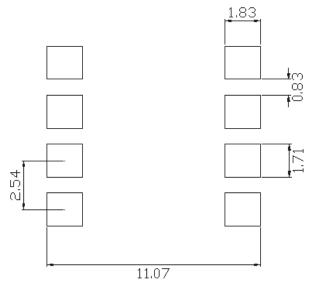



Option S Type





Option S1 Type



Recommended pad layout for surface mount leadform



Notes.

Suggested pad dimension is just for reference only.

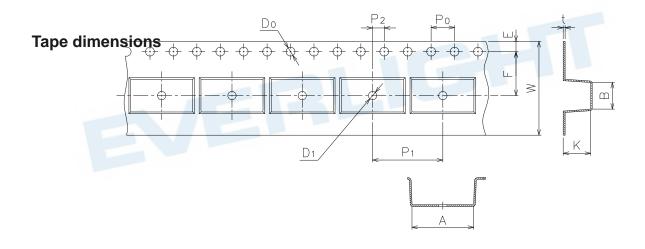
Please modify the pad dimension based on individual need.

Device Marking

N	ot	es
---	----	----

T denotes Factory

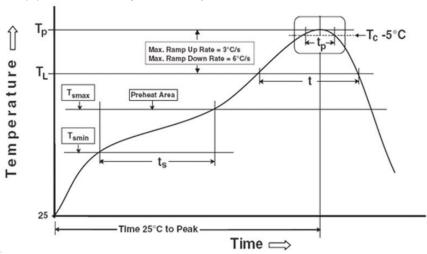
No code : made in China


T: made in Taiwan

EL denotes EVERLIGHT
6N138 denotes Device Number
Y denotes 1 digit Year code
WW denotes 2 digit Week code
V denotes VDE (optional)

Tape & Reel Packing Specifications

Option TA Option TB Option TB


Dimension No.	Α	В	Do	D1	E	F
Dimension(mm)	10.4±0.1	10.0±0.1	1.5+0.1/-0	1.5±0.25	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	W	К
Dimension(mm)	4.0±0.1	12.0±0.1	2.0±0.05	0.4±0.05	16.0±0.3	4.5±0.1

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note:

Preheat

Temperature min (T_{smin}) Temperature max (T_{smax}) Time $(T_{smin} \text{ to } T_{smax}) (t_s)$

Average ramp-up rate (T_{smax} to T_p)

Other

Liquidus Temperature (T_L) Time above Liquidus Temperature (t L) Peak Temperature (T_P)

Time within 5 °C of Actual Peak Temperature: T_P - 5°C

Ramp- Down Rate from Peak Temperature

Time 25°C to peak temperature

Reflow times

150 °C

200°C

60-120 seconds

Reference: IPC/JEDEC J-STD-020D

3 °C/second max

217 °C

60-100 sec

260°C

30 s

6°C /second max.

8 minutes max.

3 times

DISCLAIMER

- Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 3. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.
- 6. Statements regarding the suitability of products for certain types of applications are based on Everlight's knowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Everlight's terms and conditions of purchase, including but not limited to the warranty expressed therein.