

198 Champion Court San Jose, CA 95134-1709 (408) 943-6200

FINAL PRODUCT CHANGE NOTIFICATION

PCN: PCN084643

Date: March 18, 2008

Subject: Datasheet Change to Standard SRAM port Read and Write Cycle timing parameters for the 65ns MoBL ADM Dual-Port products.

To: EPCN PROGRAM MANAGER ARROW epcn@arrow.com

Description of Change:

The MoBL ADM Dual-Ports are inter-processor connectivity solutions for mobile handheld devices. The Standard SRAM port Read and Write timing parameters are being changed for the 65ns MoBL ADM Dual-Ports for productivity reasons. Work with lead customer has confirmed that these changes to the 65ns speed product do not adversely affect functionality while enabling Cypress to respond to projected demand ramps.

Currently the access time for the Standard port is set at 40ns. This Notification advises that the Standard port access time is changed to 55ns. The details of the change are described below. No other changes to product functionality have been made.

Associated datasheets and models can be downloaded from the Cypress website (<u>www.cypress.com</u>).

Benefit of Change:

Cypress will be better able to respond to customer demand ramps.

Part Numbers Affected:

Affected Parts: 4

Item	Marketing Part Number	Description
1	CYDMX064A16-65BVXI	Interprocessor connectivity solutions
2	CYDMX128A16-65BVXI	Interprocessor connectivity solutions
3	CYDMX128A16-65BVXIT	Interprocessor connectivity solutions
4	CYDMX256A16-65BVXI	Interprocessor connectivity solutions

Customer Part Numbers Affected:

Affected Parts: N/A

Qualification Status:

The MoBL ADM Dual-Port is qualified under Qualification Test Plan QTP# 062201. A copy of QTP# 062201 is attached to this PCN.

Sample Status:

Samples are available now. Please contact your local Sales Representative to schedule samples.

Approximate Implementation Date:

The change will be effective upon customer approval of this change notification. The datasheet will be updated when this notification has been approved.

Anticipated Impact:

The following timing parameters in the datasheet will change for the 65ns MoBL ADM product:

		Current	Timing	[New	Timing
	Standard Port Read Cycle					
Parameter	Description	Min	Max		Min	Max
tRC	Read Cycle Time	40			55	
tAA	Address to Data Valid		40			55
tOHA	Output Hold from Address Change	5			5	
tACS	CS# to Data Valid		40			55
tDOE	OE# Low to Data Valid		25			30
tLZOE[24]	OE# Low to Data Low-Z	5			5	
thzoe	OE# High to Data High-Z		10			25
tLZCS	CS# Low to Data Low-Z	5			5	
tHZCS	CS# High to Data High-Z		10			25
tLZBE	UB#/LB# Low to Data Low-Z	5			5	
tHZBE	UB#/LB# High to Data High-Z		10			25
tABE	UB#/LB# Access Time		40			55

	Standard SRAM Port Write Cycle				
Parameter	Description	Min	Max	Min	Max
tWC	Write Cycle Time	40		55	
tSCS	CS# Low to Write End	30		45	
tAW	Address Valid to Write End	30		45	
tHA	Address Hold from Write End	0		0	
tSA	Address Set-Up to Write Start	0		0	
tWRL	Write Pulse Width	25		40	
tSD	Data Set-Up to Write End	20		30	
tHD	Data Hold from Write End	0		0	
tHZWE	WE# Low to Data High-Z		15		25
tLZWE	WE# High to Data Low-Z	0		0	

	Arbitration Timing				
Parameter	Description	Min	Max	Min	Max
	BUSY# Low from Address				
tBLA	Match		30		45
	BUSY# High from Address				
tBHA	Match		30		45
tBLC	BUSY# Low from CS# Low		30		45
tBHC	BUSY# High from CS# High		30		45
tPS[27]	Port Set-Up for Priority	5		5	
tBDD	BUSY# High to Data Valid		30		45

tWDD	Write Pulse to Data Delay	55		80
	Write Data Valid to Read			
tDDD	Data Valid	45		65

	Interrupt Timing				
Parameter	Description	Min	Max	Min	Max
tINS	INT# Set Time		35		45
tINR	INT# Reset Time		35		45

Method of Identification:

The affected parts will retain the same ordering codes as before. There will be no change in the ordering information. Cypress maintains traceability of product to wafer level, including wafer fab location.

Response Required:

No response is required.

For additional information regarding this change, contact your local sales representative or by email to pcn_adm@cypress.com.

Sincerely,

Richard Oshiro PCN Process Manager

Cypress Semiconductor Product Qualification Report

QTP# 062201 VERSION 1.0 September 2007

MoBL ADM Dual Port Static RAM Family					
R52LD-3 Technology, Fab4					
CYDMX256A16 CYDMX128A16 CYDMX064A16	4K/8K/16K x 16 MoBL® ADM Asynchronous Dual–Port Static RAM				

CYPRESS TECHNICAL CONTACT FOR QUALIFICATION DATA:

Rene Rodgers Principal Reliability Engineer (408) 943-2732 Mira Ben-Tzur Quality Engineering Director (408) 943-2675

PRODUCT QUALIFICATION HISTORY

QUAL REPORT	DESCRIPTION OF QUALIFICATION PURPOSE	DATE COMP.
99075	New Technology R52LD-3 / New Slow Low Power MoBL SRAM, CY62137V	Apr 99
052103	Qualify 256K Dual Port (Split Voltage) Device Family, R52LD3 Technology from Fab4	Nov 05
062201	Qualification of Device 7C02638A (MoBL ADM Dual Port) in R52LD-3 Technology at Fab 4	Sep 06

PRODUCT DESCRIPTION (for qualification)					
Qualification Purpose: To qualify 3 rd Generation MoBL DP ADM on existing package and qualified technology, R52LD-3.					
Marketing Part #: CYDMX256A16, CYDMX128A08, CYDMX064A16					
Device Description: 1.8/2.5/3V 256K/128K/64K (16K/8K/4K x 16) MoBL ADMux Dual port					
Cypress Division: Cypress Semiconductor Corporation – Data Communication Division					
Overall Die (or Mask) REV:	Rev. A				
What ID markings on Die:	7C02638A				

	TECHNOLOGY/FAB PROCESS DESCRIPTION – R52LD3					
Number of Metal Layers:	2	Metal Co	omposition:	Metal 1: 500 Å-TiW/6000 Å Al-Cu/500 Å TiW		
				Metal 2: 300 Å-Ti/8000 Å Al-Cu/300 Å TiW		
Passivation Type and Materials:			1,000A TEOS	+ 9,000A SiN		
Free Phosphorus contents in top	glass layer (%)	:	0%			
Die Coating(s), if used:			N/A			
Number of Transistors in Device	:		2932342			
Number of Gates in Device:			733086			
Generic Process Technology/Des	sign Rule (-di	rawn):	R52 TDR (01-30065), 0.25um Technology			
Gate Oxide Material/Thickness (MOS):			55Å			
Name/Location of Die Fab (prime) Facility:			Cypress Semiconductor – Bloomington Minnesota			
Die Fab Line ID/Wafer Process I	ID:		7C02638A			

PACKAGE AVAILABILITY

PACKAGE	ASSEMBLY FACILITY SITE
100-Ball VFBGAASE Taiwan (TAIWN-G)	

Note: Package Qualification details upon request.

F

71

MAJOR PACKAGE INFORMATION USED IN THIS QUALIFICATION				
Package Designation:	BZ100			
Package Outline, Type, or Name:	100-Ball, Very Fine Ball Grid Array (VFBGA)			
Mold Compound Name/Manufacturer:	KE-G2270			
Mold Compound Flammability Rating:	V-O per UL94			
Oxygen Rating Index:	N/A			
Substrate Material:	CCL-HL832NX			
Lead Finish, Composition / Thickness:	SnAgCu			
Die Backside Preparation Method/Metallization:	Backgrind			
Die Separation Method:	100%			
Die Attach Supplier:	Ablestik			
Die Attach Material:	2025D			
Die Attach Method:	Ероху			
Bond Diagram Designation:	001-08055			
Wire Bond Method:	Thermosonic			
Wire Material/Size:	Au, 0.8mil			
Thermal Resistance Theta JA and JC °C/W:	44.21 , 19			
Package Cross Section Yes/No:	N/A			
Assembly Process Flow:	001-06964			
Name/Location of Assembly (prime) facility:	ASE Taiwan (TAIWN-G)			

ELECTRICAL TEST / FINISH DESCRIPTION							
Test Location:	CML-R						
Fault Coverage:	100%						

Note: Please contact a Cypress Representative for other packages availability.

RELIABILITY TESTS PERFORMED PER SPECIFICATION REQUIREMENTS

Stress/Test	Test Condition (Temp/Bias)					
Alpha Particle Emission	0.001 CPH/Cm ²	Р				
Data Retention (Hermetic)	250 C, non-biased	Р				
Data Retention (Plastic)	150 C, non-biased	Р				
Electrostatic Discharge Charge Device Model (ESD-CDM)	500V Cypress Spec. 25-00020	Р				
Electrostatic Discharge Human Body Model (ESD-HBM)	2,200V MIL- STD-883, Method 3015 JESD22, Method A114-B	Р				
High Accelerated Saturation Test (HAST)	140°C, 3.63V, 85%RH Precondition: JESD22 Moisture Sensitivity MSL 3 192 Hrs, 30°C/60%RH+3IR-Reflow, 260°C+0, -5°C	Р				
High Temperature Operating Life Early Failure Rate	Dynamic Operating Condition, Vcc Max = 3.45V, 125°C Dynamic Operating Condition, Vcc Max = 3.45V, 150°C Dynamic Operating Condition, Vcc Max = 3.8V, 150°C	Р				
High Temperature Operating Life Latent Failure RateDynamic Operating Condition, Vcc Max = 3.45V, 125°C Dynamic Operating Condition, Vcc Max = 3.45V, 150°C Dynamic Operating Condition, Vcc Max = 3.8V, 150°C						
High Temperature Steady State Life	Static Operating Condition, Vcc Max = 3.63V, 150°C	Р				
High Temperature Storage	165C, no bias	Р				
Long Life Verification	Dynamic Operating Condition, Vcc Max = 3.8V, 150°C	Р				
Low Temperature Operating Life	-30C, 3.8V, 8 MHz	Р				
Pressure Cooker	121°C, 100%RH Precondition: JESD22 Moisture Sensitivity MSL 3	Р				
	192 Hrs, 30°C/60%RH+3IR-Reflow, 260°C+0, -5°C					
Static Latch-up	125C, ± 200mA In accordance with JEDEC 17. Cypress Spec. 01-00081	Р				
Temperature Cycle	MIL-STD-883C, Method 1010, Condition C, -65°C to 150°C Precondition: JESD22 Moisture Sensitivity MSL 3	Р				
	192 Hrs, 30°C/60%RH+3IR-Reflow, 260°C+0, -5°C					
Thermal Series	MIL-STD-883-5005, D3	Р				

RELIABILITY FAILURE RATE SUMMARY

Stress/Test	Device Tested/ # Device Hours Fails		Activation Energy	Acceleration Factor ³	Failure Rate
High Temperature Operating Life Early Failure Rate	1078 Devices	0	N/A	N/A	0 PPM
High Temperature Operating Life ^{1,2} Long Term Failure Rate	400,500 HRs	1	0.7	170	30 FITs

¹Assuming an ambient temperature of 55°C and a junction temperature rise of 15°C. ²Chi-squared 60% estimations used to calculate the failure rate.

³Thermal Acceleration Factor is calculated from the Arrhenius equation

$$AF = \exp\left[\frac{E_A}{k}\left[\frac{l}{T_2} - \frac{l}{T_1}\right]\right]$$

where:

 E_A =The Activation Energy of the defect mechanism.

 $k = Boltzmann's constant = 8.62x10^{-5} eV/Kelvin.$

 T_1 is the junction temperature of the device under stress and T_2 is the junction temperature of the device at use conditions.

			QTF	•#: 99075	5		
Device	Fab Lot #	Assy Lot #	Assy Loc	Duration	Samp	Rej	Failure Mechanism
STRESS: ESD-CH	ARGE DEVICE I	MODEL, 500V					
CY62137V-ZSIB	4852210	619903364	CSPI-R	COMP	3	0	
CY62137V-ZSIB	4851023	619907600	CSPI-R	COMP	3	0	
STRESS: HIGH TE	EMP DYNAMIC C	PERATING LIFE	EARLY FAIL	URE RATE (1	50C, 3.8V,	>Vcc M	ax)
CY62137V-ZSIB	4852210	619903364	CSPI-R	48	1505	0	
CY62137V-ZSIB	4902501	619905577	CSPI-R	48	1504	0	
STRESS: HIGH TE	EMP DYNAMIC C	PERATING LIFE	LATENT FAIL	LURE RATE ((150 C , 3.8V	, >Vcc I	Max)
CY62137V-ZSIB	4852210	619903364	CSPI-R	80	405	0	
CY62137V-ZSIB	4852210	619903364	CSPI-R	500	405	1	UNKNOWN
CY62137V-ZSIB	4902501	619905577	CSPI-R	80	396	0	
CY62137V-ZSIB	4902501	619905577	CSPI-R	500	396	0	
STRESS: LONG L	IFE VERIFICATI	ON, (150C, 3.8V, :	>Vcc Max)				
CY62137V-ZSIB	4852210	619903364	CSPI-R	1000	404	0	
STRESS: HIGH TE	EMP DYNAMIC S	TEADY STATE L	IFE TEST, (15	0C, 3.63V, >1	Vcc Max)		
CY62137V-ZSIB	4852210	619903364	CSPI-R	80	80	0	
CY62137V-ZSIB	4852210	619903364	CSPI-R	168	80	0	
STRESS: LOW TE	MPERATURE O	PERATING LIFE,	(-30C, 3.8V, 8	MHZ)			
CY62137V-ZSIB	4852210	619903364	CSPI-R	500	45	0	
STRESS: ESD-HU	MAN BODY CIR	CUIT PER JESD2	2, METHOD A	114-B, 2,200	V		
CY62137V-ZSIB	4852210	619903364	CSPI-R	COMP	3	0	
CY62137V-ZSIB	4851023	619907600	CSPI-R	COMP	3	0	
STRESS: HIGH TE	EMPERATURE S	TORAGE, 165C, I	no bias				
CY62137V-ZSIB	4852210	619903364	CSPI-R	336	47	0	
CY62137V-ZSIB	4852210	619903364	CSPI-R	1000	47	0	
CY62137V-ZSIB	4902501	619905577	CSPI-R	336	48	0	
STRESS: TC CON	DITION C, -65C	TO 150C, PRE CO	OND 192 HRS	30C/60% RH	, MSL3		
CY62137V-ZSIB	4852210	619903364	CSPI-R	300	48	0	
CY62137V-ZSIB	4852210	619903364	CSPI-R	1000	48	0	
CY62137V-ZSIB	4902501	619905577	CSPI-R	300	48	0	
CY62137V-ZSIB	4902501	619905577	CSPI-R	1000	48	0	

QTP #: 99075

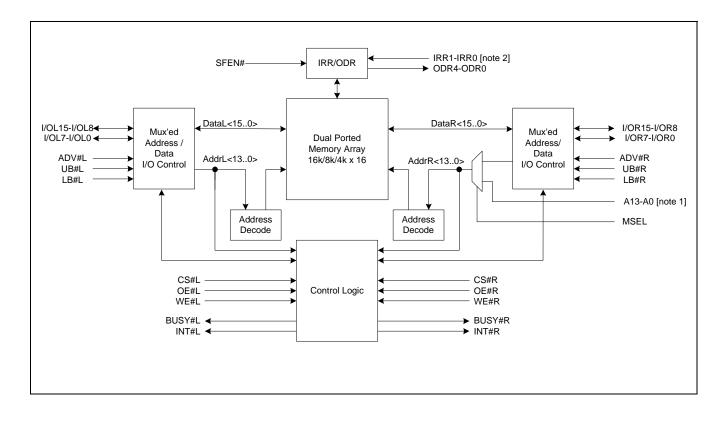
Device	Fab Lot #	Assy Lot #	Assy Loc	Duration	Samp	Rej	Failure Mechanism
STRESS: PRESSU	RE COOKER TE	ST (121C, 100%I	RH), PRE COI	ND 192HRS 3	0C/60%RH,	MSL3	
CY62137V-ZSIB	4852210	619903364	CSPI-R	168	48	0	
STRESS: HI-ACCE	L SATURATION	TEST, (140C, 3.6	3V), 85%RH,	PRE COND	192 HR 30C	/60%RH	H, MSL3
CY62137V-ZSIB	4852210	619903364	CSPI-R	128	48	0	
CY62137V-ZSIB	4852210	619903364	CSPI-R	256	48	0	
CY62137V-ZSIB	4902501	619905577	CSPI-R	128	48	0	
CY62137V-ZSIB	4902501	619905577	CSPI-R	256	48	0	
CY62137V-ZSIB	4903568	619907944	CSPI-R	128	48	0	

		QTF	P <i>#:</i> 052103	3			
Device	Fab Lot #	Assy Lot #	Assy Loc	Duration	Samp	Rej	Failure Mechanism
STRESS: HIGH TEMP DYNAMIC	OPERATING L	IFE-EARLY FAIL	URE RATE, 15	0C, 3.45V, Vcc	Max		
CYDC256B16 (7C02628A)	4531145	610540035	TAIWN-G	48	330	0	
CYDC256B16 (7C02628A)	4531145	610540036	TAIWN-G	48	328	0	
CYDC256B16 (7C02628A)	4531145	610540037	TAIWN-G	48	332	0	
STRESS: ESD-CHARGE DEVICE	MODEL, 500V	/					
CYDM256B16 (7C02628A)	4531145	610539449	TAIWN-G	COMP	9	0	
CYDC256B16 (7C02628A)	4531145	610540035/6/7	TAIWN-G	COMP	9	0	
STRESS: ESD-HUMAN BODY CI	RCUIT PER JE	SD22, METHOD	A114-B, 2,200V	,			
CYDM256B16 (7C02628A)	4531145	610539449	TAIWN-G	COMP	9	0	
CYDC256B16 (7C02628A)	4531145	610540035/6/7	TAIWN-G	COMP	9	0	
STRESS: ESD-HUMAN BODY CI	RCUIT PER MI	L STD 883, METH	IOD 3015, 2,200	0V			
CYDM256B16 (7C02628A)	4531145	610539449	TAIWN-G	COMP	3	0	
CYDC256B16 (7C02628A)	4531145	610540035/6/7	TAIWN-G	COMP	3	0	
STRESS: STATIC LATCH-UP TES	STING (125C, 1	7.0V, +/-300mA)					
CYDM256B16 (7C02628A)	4531145	610539449	TAIWN-G	COMP	3	0	
STRESS: PRESSURE COOKER 1	EST, 121C, 10	00%RH, PRE CON	ID 192 HR 30C	60%RH, MSL3	}		
CYDM256A16 (7C02618A)	4503160	610510254	TAIWN-G	168	50	0	
STRESS: TC COND. C -65C TO 1	50C, PRE COI	ND 192 HRS 30C/0	60%RH, MSL3				
CYDM256A16 (7C02618A)	4503160	610510254	TAIWN-G	300	50	0	
CYDM256A16 (7C02618A)	4503160	610510254	TAIWN-G	500	50	0	
CYDM256A16 (7C02618A)	4503160	610510254	TAIWN-G	1000	50	0	

QTP #:	062201
--------	--------

Device	Fab Lot #	Assy Lot #	Assy Loc	Duration	Samp	Rej	Failure Mechanism
STRESS: ALPHA PARTICLE EN	IISSION						
CYDC256B16 (7C02628A)	4522569	610543349	TAIWN-G	COMP	5	0	
STRESS: HIGH TEMP DYNAMIC	OPERATING I	IFE-EARLY FAIL	LURE RATE, 15	0C, 3.45V, Vcd	: Max		
CYDCX256A16 (7C02638A)	4622252	610647256	CML-R	48	485	0	
CYDCX256A16 (7C02638A)	4622252	610647257	CML-R	48	400	0	
STRESS: HIGH TEMP DYNAMIC	OPERATING I	IFE-EARLY FAIL	LURE RATE, 12	5C, 3.45V, Vcd	: Max		
CYDMX256A16 (7C02638A)	4622252	610646577	TAIWN-G	96	193	0	
STRESS: ESD-CHARGE DEVICI	E MODEL, 500V	/					
CYDMX256A16 (7C02638A)	4622252	610646577	TAIWN-G	COMP	9	0	
STRESS: ESD-HUMAN BODY C	IRCUIT PER JE	SD22, METHOD	A114-B, 2,200V	,			
CYDMX256A16 (7C02638A)	4622252	610646577	TAIWN-G	COMP	9	0	
STRESS: ESD-HUMAN BODY C	IRCUIT PER MI	L STD 883, METH	HOD 3015, 2,20	ov			
CYDMX256A16 (7C02638A)	4622252	610646577	TAIWN-G	COMP	3	0	
STRESS: STATIC LATCH-UP TE	STING (125C, 3	5.4V, +/-200mA)					
CYDMX256A16 (7C02638A)	4622252	610646577	TAIWN-G	COMP	3	0	
STRESS: PRESSURE COOKER	TEST, 121C, 10	00%RH, PRE COI	ND 192 HR 30C	/60%RH, MSL	3		
CYDM256A16 (7C02618A)	4503160	610510254	TAIWN-G	168	50	0	
STRESS: TC COND. C -65C TO	150C, PRE COI	ND 192 HRS 30C/	/60%RH, MSL3				
CYDM256A16 (7C02618A)	4503160	610510254	TAIWN-G	300	50	0	
CYDM256A16 (7C02618A)	4503160	610510254	TAIWN-G	500	50	0	
CYDM256A16 (7C02618A)	4503160	610510254	TAIWN-G	1000	50	0	

CYDMX256A16 CYDMX128A16 CYDMX064A16


16k/8k/4k x 16 MoBL[®] ADM Asynchronous Dual-Port Static RAM

Features

- True dual-ported memory block that allow simultaneous access
 - One port with dedicated time-multiplexed address/data (ADM) interface
 - One port configurable to standard SRAM or time-multiplexed address/data interface
- 16k/8k/4k × 16 memory configuration
- High-speed access
 - 65 ns or 90 ns ADM interface
 - 40 ns or 60 ns standard SRAM interface
- Fully asynchronous operation

- Port-independent 1.8V, 2.5V, and 3.0V I/Os
- Ultra Low operating power
 - Active: I_{CC} = 15 mA (typical) at 90 ns
 - Active: I_{CC} = 25 mA (typical) at 65 ns
- Standby: $I_{SB3} = 2 \mu A$ (typical)
- Port-independent power-down
- On-chip arbitration logic
- · Mailbox interrupt for port-to-port communication
- Input Read/Output Drive Registers
- Upper-byte and lower-byte control
- Small Package: 6x6 mm, 100-ball Pb-free BGA
- Industrial temperature range

Figure 1. Top Level Block Diagram

Notes

1. A13-A0 for CYDMX256A16; A12-A0 for CYDMX128A16 and A11-A0 for CYDMX064A16.

2. IRR1 and IRR2 not available for CYDMX256A16.

Pin Configurations

_	1	2	3	4	5	6	7	8	9	10	_
A	A5	A8	A11	UB#R	VSS	ADV#R	I/OR15	I/OR12	I/OR10	VSS	A
в	A3	A4	A7	A9	CE#R	WE#R	OE#R	VDDIOR	I/OR9	I/OR6	в
С	A0	A1	A2	A6	LB#R	IRR1 ^[3]	I/OR14	I/OR11	I/OR7	VSS	с
D	ODR4	ODR2	BUSY#R	INT#R	A10	A12 ^[4]	I/OR13	I/OR8	I/OR5	I/O2R	D
Е	VSS	DNU	ODR3	INT#L	VSS	VSS	I/OR4	VDDIOR	I/OR1	VSS	Е
F	SFEN#	ODR1	BUSY#L	DNU	VCC	VSS	I/OR3	I/OR0	I/OL15	VDDIOL	F
G	ODR0	DNU	DNU	DNU	OE#L	I/OL3	I/OL11	I/OL12	I/OL14	I/OL13	G
н	DNU	DNU	DNU	LB#L	CE#L	I/OL1	VDDIOL	MSEL	DNU	I/OL10	н
J	DNU	DNU	DNU	IRR0 ^[5]	VCC	VSS	I/OL4	I/OL6	I/OL8	I/OL9	J
к	DNU	DNU	DNU	UB#L	ADV#L	WE#L	I/OL0	I/OL2	I/OL5	I/OL7	к
	1	2	3	4	5	6	7	8	9	10	•

100-Ball 0.5-mm Pitch BGA Top View CYDMX256A16/CYDMX128A16/CYDM064A16

Notes
3. This pin is A13 for CYDMX256A16.
4. This pin is DNU for CYDMX064A16.
5. This pin is DNU for CYDMX256A16.
6. DNU pins are "do not use" pins. No trace or power component can be connected to these pins.

Pin Definitions

Left Port	Right Port	Description					
CS#L	CS#R	Chip Select					
WE#L	WE#R	Read/Write Enable					
OE#L	OE#R	Output Enable					
	A0–A13	Address (A0–A11 for 4k device; A0–A12 for 8k device; A0–A13 for 16k device)					
	MSEL	Right Port Interface Mode Select (0: Standard SRAM; 1: Address/Data Mux)					
I/OL0-I/OL15	I/OR0–I/OR15	Address/Data Bus Input/Output					
ADV#L	ADV#R	Address Latch Enable; ADV#R only use when R-port is in ADM mode					
UB#L	UB#R	Upper Byte Select (I/O8–I/O15)					
LB#L	LB#R	Lower Byte Select (I/O0–I/O7)					
INT#L	INT#R	Interrupt Flag					
BUSY#L	BUSY#R	Busy Flag					
SF	EN#	Special Function Enable Signal					
IRRC	-IRR1	Input Signals for Input Read Registers for CYDM128A16 and CYDMX064A16; IRR0 is DNU and IRR1 is A13 for CYDMX256A16					
ODRO	-ODR4	Output Signals for Output Drive Registers; These are open-drained outputs.					
V	CC	Core Power Supply					
G	ND	Ground					
VDI	DIOL	Left Port I/O Power Supply					
VDI	DIOR	Right Port I/O Power Supply					
D	NU	No Connect; Do not connect trace or power component to these pins.					

Functional Description

The CYDMX256A16, CYDMX128A16 and CYDMX064A16 are low-power CMOS 16k/8k/4k x 16 dual-port static RAMs. The two ports are: one dedicated time-multiplexed address and data (ADM) interface and one configurable standard SRAM or ADM interface. The two ports permit independent, asynchronous read and write access to any memory locations. Each port has independent control pins: Chip Select (CS#), Write Enable (WE#), and Output Enable (OE#). Two output flags are provided on each port (BUSY# and INT#). BUSY# flag is triggered when the port is trying to access the same memory location currently being accessed by the other port. The Interrupt flag (INT#) permits communication between ports or systems by means of a mailbox. Power-down feature is controlled independently on each port by a Chip Select (CS#) pin.

The CYDMX256A16, CYDMX128A16 and CYDMX064A16 are available in 100-ball 0.5-mm pitch Ball Grid Array (BGA) packages. Application areas include interprocessor/multiprocessor designs, communications status buffering, and dual-port video/graphics memory.

Power Supply

The core voltage (V_{CC}) can be 1.8V, 2.5V or 3.0V, as long as it is lower than or equal to the I/O voltage. Each port can operate on independent I/O voltages. This is determined by

what is connected to the V_{DDIOL} and V_{DDIOR} pins. The supported I/O standards are 1.8V/2.5V LVCMOS and 3.0V LVTTL.

ADM Interface Read/Write Operation

The description of this section is applicable to both the left ADM port and right port configured as an ADM port.

Three control signals, ADV#, WE# and CS# are used to perform the read/write operation. Address signals are first applied to the I/O bus along with CS# LOW. The addresses are loaded from the I/O bus in response to the rising edge of the Address Latch Enable (ADV#) signal. It is necessary to meet the set-up (t_{AVDS}) and hold (t_{AVDH}) times given in the AC specifications with valid address information in order to properly latch the addresses.

Once the address signals are latched in, a read operation is issued when WE# stays HIGH. The I/O bus becomes HIGH-Z once the address signals meet t_{AVDH} . The read data is driven on the I/O bus t_{OE} after the OE# is asserted LOW, and held until t_{HZOE} or t_{HZCS} after the rising edge of OE# or CS#, whichever comes first.

A write operation is issued when WE# is asserted LOW. The write data is applied to the I/O bus right after address meets the hold time (t_{AVDH}). And write data is written with the rising edge of either WE# or CS#, whichever comes first, and meets data set-up (t_{SD}) and hold (t_{HD}) times.

Standard SRAM Interface Read/Write Operation

The description of this section is applicable to the right access port configured as standard SRAM port. Read/write operation with standard SRAM interface configuration is the same as the ADM port except addresses are presented on the A bus. Operation is controlled by CS#, OE# and WE#. A read operation is issued when WE# is asserted HIGH. A write operation is issued when WE# is asserted LOW. The I/O bus is the destination for read data and the source for write data when the read operation is issued. However, write data needs to be driven to I/O when the write operation is issued.

Byte Select Operation

The fundamental word size is 16 bits. Each word is broken up into two 8-bit bytes. Each port has two active-LOW byte enables: UB# and LB#. Activating or deactivating the byte enables alters the result of read and write operations to the port. During a write, byte enable asserted HIGH inhibits the corresponding byte to be updated in the addressed memory location. During a read, both byte enables are inputs to the asynchronous output enable control logic. When a byte enable is asserted HIGH, the corresponding data byte is tri-stated. Subsequently, when the byte enable is asserted LOW, the corresponding data byte is driven with the read data.

Chip Select Operation

Each port has one active-LOW chip select signal, CS#. CS# must be asserted LOW for the port to be considered active. In order to issue a valid read or write operation, the chip select input must be asserted LOW throughout the read or write cycle. When CS# is deasserted HIGH during a write, if t_{WRL} , t_{SD} and t_{HD} are not met and the contents of the addressed location is not altered.

An automatic power-down feature controlled by deactivating the chip select (CS# HIGH) permits the on-chip circuitry of each port to enter a very low standby power mode.

Output Enable Operation

Each port has one output enable signal, OE#. When OE# is asserted HIGH, I/O bus is tri-stated after t_{HZOE} . When OE# is asserted LOW, control of the I/O bus is assumed by the asynchronous output enable logic (the logic is controlled by inputs WE#, CS#, UB#, LB#).

Mailbox Interrupts

The upper two memory locations may be used for message passing. The highest memory location (0xFFF for the CYDMX064A16, 0x1FFF for the CYDMX128A16, and 0x3FFF for CYDMX256A16) is the mailbox for the right port. The second-highest memory location (0xFFE for the CYDMX064A16, 0x1FFE for the CYDMX128A16, and 0x3FFE for CYDMX256A16) is the mailbox for the left port. When one port writes to the opposite port's mailbox, an interrupt signal is generated to the opposite port. The interrupt resets when the owner reads the contents of its own mailbox. The message written to the mailbox is user-defined.

Each port can read the other port's mailbox without resetting the interrupt. The active state of the busy signal (to a port) prevents the port from setting the interrupt to the winning port. Also, an active busy to a port prevents that port from reading its own mailbox and, thus, resetting the interrupt to it. On power-up, both interrupts are set by default. An initialization program must be run to reset the interrupts.

If an application does not require message passing, do not connect the interrupt pin to the processor's interrupt request input pin.

Arbitration Logic

The CYDMX256A16, CYDMX128A16 and CYDMX064A16 provide on-chip arbitration to resolve simultaneous memory location access (collision). If both ports' CS# signals are asserted and an address match occurs within of each other, the busy logic determines which port has access. If t_{PS} is violated, one of the two ports gains permission to the location, but it is not predictable which port gets the permission. BUSY# is asserted t_{BLA} after an address match or t_{BLC} after CS# is taken LOW.

Input Read Register

The Input Read Register feature is only available for CYDMX128A16 and CYDMX064A16 devices. When SFEN# = V_{IL} , the Input Read Register (IRR) captures the status of two external devices connected to the Input Read pins (IRR0 and IRR1) to address location 0x0000. Address 0x0000 is not available for standard memory accesses when SFEN# = V_{IL} . When SFEN# = V_{IH} , address 0x0000 is available for normal memory accesses. Either port accesses the contents of IRR with normal read operation from address 0x0000. During reads from the IRR, I/O<1:0> are valid bits and I/O<15:2> are don't care. The IRR inputs will be 1.8V/2.5V LVCMOS or 3.0V LVTTL, depending on the core voltage supply (V_{CC}).

Output Drive Register

The Output Drive Register (ODR) determines the state of up to five external binary state devices by providing a path to V_{SS} for the external circuit. These outputs are Open Drain. The five external devices can operate at different voltages ($1.5V \le V_{DDIO} \le 3.5V$) but the combined current cannot exceed 40 mA (8 mA max for each external device). The status of the ODR bits are set using standard write accesses from either port to address 0x0001 with a '1' corresponding to on and '0' corresponding to off. The status of the ODR bits are read with a normal read access to address 0x0001. When SFEN# = V_{IL} , the ODR is active and address 0x0001 is not available for memory accesses. When SFEN# = V_{IH} , the ODR is inactive and address 0x0001 is used for standard accesses. During reads and writes to ODR, I/O<4:0> are valid and I/O<15:5> are don't care.

Architecture

The CYDMX256A16, CYDMX128A16, and CYDMX064A16 consist of an array of 16k, 8k and 4k words of 16 dual-ported SRAM cells, I/O, address lines, and control signals (CS#, ADV#, OE# and WE#). Between the two access ports, one is a dedicated time-multiplexed address/data interface; the other is a pin selectable port to either standard SRAM or time-multiplexed address/data interface. Independent control signals for each port permit simultaneous access to any location in memory. To handle the situation of writing/reading to the same location, a BUSY# pin is provided on each port. For port-to-port communication, an Interrupt (INT#) pin is also available on each port.

ADV#	CS#	WE#	OE#	UB#	LB#	I/O0 - I/O15	Mode
Х	Н	Х	Х	Х	Х	High-Z	Deselected/Power down
Х	Х	Х	Н	Х	Х	High-Z	Output Disable
Х	Х	X	Х	Н	Н	High-Z	Upper and lower byte deselected
Pulse	L	Н	L	L	L	Data Out (I/O0-I/O15)	Read upper and lower bytes
Pulse	L	Н	L	Н	L	Data Out (I/O0-I/O7) High-Z (I/O8-I/O15)	Read lower byte only
Pulse	L	Н	L	L	Н	High-Z (I/O0-I/O7) Data Out (I/O8-I/O15)	Read upper byte only
Pulse	L	L	Х	L	L	Data In (I/O0-I/O15)	Write upper and lower bytes
Pulse	L	L	Х	Н	L	Data In (I/O0-I/O7) High-Z (I/O8-I/O15)	Write lower byte only
Pulse	L	L	Х	L	Н	High-Z (I/O0-I/O7) Data In (I/O8-I/O15)	Write upper byte only

Table 1. ADM Interface Read/Write with Byte Select Operations

CS#	WE#	OE#	UB#	LB#	I/O0-I/O15	Mode
Н	Х	Х	Х	Х	High-Z	Deselected/Power down
Х	Х	Н	Х	Х	High-Z	Output Disable
Х	Х	Х	Н	Н	High-Z	Upper and lower byte deselected
L	Н	L	L	L	Data Out (I/O0-I/O15)	Read upper and lower bytes
L	Н	L	Н	L	Data Out (I/O0-I/O7) High-Z (I/O8-I/O15)	Read lower byte only
L	Н	L	L	Н	High-Z (I/O0-I/O7) Data Out (I/O8-I/O15)	Read upper byte only
L	L	Х	L	L	Data In (I/O0-I/O15)	Write upper and lower bytes
L	L	Х	Н	L	Data In (I/O0-I/O7) High-Z (I/O8-I/O15)	Write lower byte only
L	L	Х	L	Н	High-Z (I/O0-I/O7) Data In (I/O8-I/O15)	Write upper byte only

Table 3. Interrupt Operation Example (Assumes BUSY#L = BUSY#R = HIGH)

Function			Let	ft Port	Right Port						
Function	WE#L	CS#L	OE#L	AddressL	INT#L	WE#R	CS#R	OE#R	AddressR	INT#R	
Set Right INT#R Flag	L	L	Х	0x3FFF ^[7]	Х	Х	Х	Х	Х	L	
Reset Right INT#R Flag	Х	Х	Х	Х	Х	Х	L	L	0x3FFF ^[7]	Н	
Set Left INT#L Flag	Х	Х	Х	Х	L	L	L	Х	0x3FFE ^[8]	Х	
Reset Left INT#L Flag	Х	L	L	0x3FFE ^[8]	Н	Х	Х	Х	Х	Х	

Notes

0x3FFF for CYDMX256A16, 0x1FFF for CYDMX128A16, 0xFFF for CYDMX064A16.
 0x3FFE for CYDMX256A16, 0x1FFE for CYDMX128A16, 0xFFE for CYDMX064A16.

Table 4. Arbitration Winning Port

CS#L	CS#R	Address Match Left/Right Port	BUSY#L	BUSY#R	Function
Х	Х	No Match	Н	Н	Normal
Н	Х	Match	Н	Н	Normal
Х	Н	Match	Н	Н	Normal
L	L	Match	See Note ^[9]	See Note ^[9]	Write Inhibit ^[10]

Table 5. Input Read Register Operation^[11]

SFEN#	CS#	WE#	OE#	UB#	LB#	ADDR	• •	I/O ₂ -I/O ₁₅	
Н	L	Н	L	L	L	x0000-Max			Standard Memory Access
L	L	Н	L	Х	L	x0000	VALID ^[13]	Х	IRR Read

Table 6. Output Drive Register^[15]

SFEN#	CS#	WE#	OE#	UB#	LB#	ADDR	• •	1/0 ₅ -1/0 ₁₅	
Н	L	Н	X ^[16]	L ^[12]	L ^[12]	x0000-Max	VALID ^[12]	VALID ^[12]	Standard Memory Access
L	L	L	Х	Х	L	x0001	VALID ^[13]	Х	ODR Write ^[17]
L	L	Н	L	Х	L	x0001	VALID ^[13]	Х	ODR Read

Notes

12. UB# or LB# = VIL. If LB# = VIL, then I/O<7:0> are valid. If UB# = VIL then I/O<15:8> are valid. 13. LB# must be active (LB# = VIL) for these bits to be valid. 14. SFEN# active when either CS#L = VIL or CS#R = VIL. It is inactive when CS#L = CS#R = VIH.

- 15. SFEN# = VIL for ODR reads and writes.
- 16. Output enable must be low (OE# = VIL) during reads for valid data to be output.
- 17. During ODR writes data will also be written to the memory.

If it meets tPS, "L" if the CS# and address of the opposite port become stable BEFORE the current port; "H" if the CS# and address of the opposite port become stable AFTER the current port. If tPS is not met, either BUSY#L or BUSY#R will result "L". BUSY#L and BUSY#R can not be "L" simultaneously.
 Write operations to the left port are internally ignored when BUSY#L is driving LOW regardless of actual logic level on the pin; Write operations to the right port are internally ignored when BUSY#R is driving LOW regardless of actual logic level on the pin; Write operations to the right port are internally ignored when BUSY#R is driving LOW regardless of actual logic level on the pin.
 SFEN# = VIL for IRR reads

Maximum Ratings^[18]

(Above which the useful life may be impaired. For user guide- lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.5V to +3.3V
DC Voltage Applied to Outputs in High-Z State–0.5V to V_{CC} + 0.5V

DC Input Voltage ^[19]	–0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	90 mA
Static Discharge Voltage	> 2000V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	–40°C to +85°C	1.8V ± 100 mV 2.5V ± 100 mV 3.0V ± 300 mV

Electrical Characteristics for V_{CC} = 1.8V Over the Operating Range

_				CYE	DMX256 DMX128 DMX064	A16	ĊYE	DMX256 DMX128 DMX064	BA16	Unit
Parameter	Description				-65			Unit		
		P1 I/O Voltage	P2 I/O Voltage	Min.	Тур.	Max.	Min.	Тур.	Max.	
V _{OH}	Output HIGH Voltage (I _{OH} = −100 μA)	1.8V (a	iny port)	V _{DDIO} - 0.2			V _{DDIO} - 0.2			V
	Output HIGH Voltage (I _{OH} = -2 mA)	2.5V (a	ny port)	2.0			2.0			V
	Output HIGH Voltage (I _{OH} = -2 mA)	3.0V (a	ny port)	2.1			2.1			V
V _{OL}	Output LOW Voltage ($I_{OL} = 100 \ \mu A$)	1.8V (a	ny port)			0.2			0.2	V
	Output HIGH Voltage (I _{OH} = 2 mA)	2.5V (a	ny port)			0.4			0.4	V
	Output HIGH Voltage (I _{OH} = 2 mA)	3.0V (a	ny port)			0.4			0.4	V
V _{OL} ODR	ODR Output LOW Voltage (I _{OL} = 8 mA)	1.8V (a	ny port)			0.2			0.2	V
		2.5V (a	ny port)			0.2			0.2	V
		3.0V (a	ny port)			0.2			0.2	V
V _{IH}	Input HIGH Voltage	1.8V (a	iny port)	1.2		V _{DDIO} + 0.2	1.2		V _{DDIO} + 0.2	V
		2.5V (a	iny port)	1.7		V _{DDIO} + 0.3	1.7		V _{DDIO} + 0.3	V
		3.0V (any port)		2.0		V _{DDIO} + 0.2	2.0		V _{DDIO} + 0.2	V
V _{IL}	Input LOW Voltage	1.8V (a	ny port)	-0.2		0.4	-0.2		0.4	V
		2.5V (a	ny port)	-0.3		0.6	-0.3		0.6	V
		3.0V (a	ny port)	-0.2		0.7	-0.2		0.7	V
I _{OZ}	Output Leakage Current	1.8V	1.8V	-1		1	-1		1	μΑ
		2.5V	2.5V	-1		1	-1		1	μΑ
		3.0V	3.0V	-1		1	-1		1	μΑ
I _{CEX} ODR	ODR Output Leakage Current.	1.8V	1.8V	-1		1	-1		1	μΑ
	V _{OUT} = V _{DDIO}	2.5V	2.5V	-1		1	-1		1	μΑ
		3.0V	3.0V	-1		1	-1		1	μΑ

Notes

The voltage on any input or I/O pin can not exceed the power pin during power-up.
 Pulse width < 20 ns.

Electrical Characteristics for V_{CC} = 1.8V Over the Operating Range (continued)

Deremeter	Description			ĊYI	OMX256 OMX128 OMX064	A16	ĊYI	DMX256 DMX128 DMX064	A16	l In it	
Parameter	Description				-65				Unit		
			P1 I/O Voltage	P2 I/O Voltage	Min.	Тур.	Max.	Min.	Тур.	Max.	
I _{IX}	Input Leakage Current		1.8V	1.8V	-1		1	-1		1	μΑ
			2.5V	2.5V	-1		1	-1		1	μΑ
			3.0V	3.0V	-1		1	-1		1	μΑ
I _{CC}	Operating Current (V _{CC} = Max., I _{OUT} = 0 mA) Outputs Disabled	Ind.	1.8V	1.8V		25	40		15	25	mA
I _{SB1}	Standby Current (Both Ports TTL Level) CE#L and CE#R \ge V _{CC} – 0.2, f = f _{MAX}	Ind.	1.8V	1.8V		2	6		2	6	μA
I _{SB2}	Standby Current (One Port TTL Level) CE#L or CE#R \ge V _{IH} , f = f_{MAX}	Ind.	1.8V	1.8V		8.5	18		8.5	14	mA
I _{SB3}	Standby Current (Both Ports CMOS Level) CE#L and CE#R \geq V _{CC} – 0.2V, f = 0	Ind.	1.8V	1.8V		2	6		2	6	μA
I _{SB4}	Standby Current (One Port CMOS Level) CE#L or CE#R \ge V _{IH} , f = $f_{MAX}^{[20]}$	Ind.	1.8V	1.8V		8.5	18		8.5	14	mA

Note 20. $f_{MAX} = 1/t_{RC}$ = All inputs cycling at f = $1/t_{RC}$ (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level standby I_{SB3} .

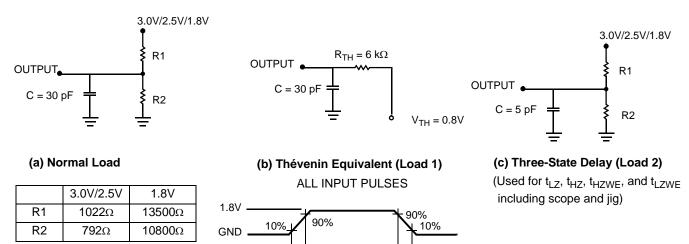
Electrical Characteristics for V_{CC} = 2.5V Over the Operating Range

Parameter	Description				CYI	OMX256 OMX128 OMX064	A16	CYI	DMX256 DMX128 DMX064 -90	BA16	Unit
Farameter	Description				-65			Unit			
			P1 I/O Voltage	P2 I/O Voltage	Min.	Тур.	Max.	Min.	Тур.	Max.	
V _{OH}	Output HIGH Voltage (I _{OH} = -2 mA	.)	2.5V (a	ny port)	2.0			2.0			V
			3.0V (a	ny port)	2.1			2.1			V
V _{OL}	Output LOW Voltage (I _{OL} = 2 mA)		2.5V (a	ny port)			0.4			0.4	V
			3.0V (a	ny port)			0.4			0.4	V
V _{OL} ODR	ODR Output LOW Voltage (I _{OL} = 8	mA)	2.5V (a	ny port)			0.2			0.2	V
			3.0V (a	ny port)			0.2			0.2	V
V _{IH}	Input HIGH Voltage		2.5V (a	ny port)	1.7		V _{DDIO} + 0.3	1.7		V _{DDIO} + 0.3	V
			3.0V (a	ny port)	2.0		V _{DDIO} + 0.2	2.0		V _{DDIO} + 0.2	V
V _{IL}	Input LOW Voltage		2.5V (a	ny port)	-0.3		0.6	-0.3		0.6	V
			3.0V (a	ny port)	-0.2		0.7	-0.2		0.7	V
I _{OZ}	Output Leakage Current		2.5V	2.5V	-1		1	-1		1	μA
			3.0V	3.0V	-1		1	-1		1	μΑ
I _{CEX} ODR	ODR Output Leakage Current.		2.5V	2.5V	-1		1	-1		1	μΑ
	$V_{OUT} = V_{CC}$		3.0V	3.0V	-1		1	-1		1	μΑ
I _{IX}	Input Leakage Current		2.5V	2.5V	-1		1	-1		1	μΑ
			3.0V	3.0V	-1		1	-1		1	μA
I _{CC}	Operating Current (V_{CC} = Max., I_{OUT} = 0 mA) Outputs Disabled	Ind.	2.5V	2.5V		39	55		28	40	mA
I _{SB1}	Standby Current (Both Ports TTL Level) CE#L and CE#R \ge V _{CC} – 0.2, f=f _{MAX}	Ind.	2.5V	2.5V		6	8		6	8	μA
I _{SB2}	Standby Current (One Port TTL Level) CE#L or CE#R \ge V _{IH} , f = f_{MAX}	Ind.	2.5V	2.5V		21	30		18	25	mA
I _{SB3}	$\begin{array}{l} \mbox{Standby Current (Both Ports} \\ \mbox{CMOS Level) CE#L and CE#R} \geq \\ \mbox{V}_{CC} - 0.2V, \ f = 0 \end{array}$	Ind.	2.5V	2.5V		4	6		4	6	μΑ
I _{SB4}	$\begin{array}{l} \mbox{Standby Current (One Port CMOS} \\ \mbox{Level}) \mbox{ CE#L or CE#R} \geq V_{IH}, \ f = f_{MAX}^{[20]} \\ \end{array}$	Ind.	2.5V	2.5V		21	30		18	25	mA

Electrical Characteristics for 3.0V Over the Operating Range

Demonstra	Description	Description			CYI	OMX256 OMX128 OMX064	A16	ĊYI	A16 A16 A16		
Parameter	Description				-65		-90			Unit	
		P1 I/O P2 I/O Voltage Voltage		Min.	Тур.	Max.	Min.	Тур.	Max.		
V _{OH}	Output HIGH Voltage (I _{OH} = -2 mA	.)	3.0V (any port)		2.1			2.1			V
V _{OL}	Output LOW Voltage (I _{OL} = 2 mA)		3.0V (any port)				0.4			0.4	V
V _{OL} ODR	ODR Output LOW Voltage (I _{OL} = 8	out LOW Voltage (I _{OL} = 8 mA)		ny port)			0.2			0.2	V
V _{IH}	Input HIGH Voltage			ny port)	2.0		V _{DDIO} + 0.2	2.0		V _{DDIO} + 0.2	V
V _{IL}	Input LOW Voltage		3.0V (a	ny port)	-0.2		0.7	-0.2		0.7	V
I _{OZ}	Output Leakage Current		3.0V	3.0V	-1		1	-1		1	μA
I _{CEX} ODR	ODR Output Leakage Current. V _{OUT} = V _{CC}		3.0V	3.0V	-1		1	-1		1	μA
I _{IX}	Input Leakage Current		3.0V	3.0V	-1		1	-1		1	μΑ
I _{CC}	Operating Current (V _{CC} = Max., I _{OUT} = 0 mA) Outputs Disabled	Ind.	3.0V	3.0V		49	70		42	60	mA
I _{SB1}		Ind.	3.0V	3.0V		7	10		7	10	μA
I _{SB2}	Level) CE#L and CE#R \ge V _{CC} – 0.2, f=f _{MAX}	Ind.	3.0V	3.0V		28	40		25	35	mA
I _{SB3}		Ind.	3.0V	3.0V		6	8		6	8	μA
I _{SB4}	Level) CE#L or CE#R \ge V _{IH} , f = f_{MAX}	Ind.	3.0V	3.0V		28	40		25	35	mA

Capacitance^[22]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_{A} = 25^{\circ}C, f = 1 \text{ MHz},$	9	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$	10	pF

Notes

^{21.} $f_{MAX} = 1/t_{RC}$ = All inputs cycling at f = 1/t_{RC} (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level standby I_{SB3} . 22. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

≤ 3 ns

Switching Characteristics for V_{CC} = 1.8V Over the Operating Range ^[23]

≤ 3 ns

Parameter	Description	CYDMX256A16 CYDMX128A16 CYDMX064A16		CYDMX256A16 CYDMX128A16 CYDMX064A16		Unit
		-	65	-90		
		Min.	Max.	Min.	Max.	
AD Mux Port Re	ad Cycle ^[25]					
tRC	Read Cycle Time	65		90		ns
tACC1	Random access ADV# Low to Data Valid		65		90	ns
tACC2	Random access Address to Data Valid		65		90	ns
tACC3	Random access CS# to Data Valid		65		90	ns
tAVDA	Random access ADV# High to Data Valid		35		50	ns
tAVD	ADV# Low Pulse	15		20		ns
tAVDS	Address Setup-up to ADV# rising edge	15		20		ns
tAVDH	Address Hold from ADV# rising edge	3		5		ns
tCSS	CS# Set-up to ADV# rising edge	7		10		ns
tOE	OE# Low to Data Valid		35		50	ns
tLZOE ^[24]	OE# Low to I/O Low-Z	3		5		ns
tHZOE	OE# High to I/O High-Z		15		25	
tHZCS	CS# High to I/O High-Z		15		25	ns
tDBE	UB#/LB# Low to I/O Valid		35		50	
tLZBE	UB#/LB# Low to I/O Low-Z	3		5		

Notes

23. All timing parameters are measured with Load 2 specified in the AC Test Loads section.

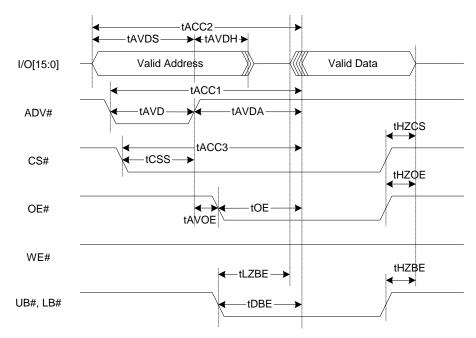
24. This parameter is guaranteed by not tested.

Parameter	Description	CYDMX	CYDMX256A16 CYDMX128A16 CYDMX064A16		(256A16 (128A16 (064A16	Unit
i alameter	Description	-65		-90		
		Min.	Max.	Min.	Max.	
tHZBE	UB#/LB# High to I/O High-Z		15		25	
tAVOE	ADV# High to OE# Low	0		0		ns
AD Mux Port W	rite Cycle ^[25]	÷				•
tWC	Write Cycle Time	65		90		ns
tSCS	CS# Low to Write End	65		90		ns
tAVD	ADV# Low Pulse	15		20		ns
tAVDS	Address Set-up to ADV# rising edge	15		20		ns
tAVDH	Address Hold from ADV# rising edge	3		5		ns
tCSS	CS# Set-up to ADV# rising edge	7		10		ns
tWRL	WE# Pulse Width	28		45		ns
tBW	UB#/LB# Low to Write End	28		45		ns
tSD	Data Set-up to Write End	20		30		ns
tHD	Data Hold from Write End	0		0		ns
tLZWE	WE# High to I/O Low-Z	0		0		ns
tAVWE	ADV# High to WE# Low	0		0		ns
Standard Port F	Read Cycle ^[26]					1
tRC	Read Cycle Time	55		60		
tAA	Address to Data Valid		55		60	
tOHA	Output Hold From Address Change	5		5		
tACS	CS# to Data Valid		55		60	
tDOE	OE# Low to Data Valid		30		35	
tLZOE ^[24]	OE# Low to Data Low-Z	5		5		
tHZOE	OE# High to Data High-Z		25		30	
tLZCS	CS# Low to Data Low-Z	5		5		
tHZCS	CS# High to Data High-Z		25		30	
tLZBE	UB#/LB# Low to Data Low-Z	5		5		
tHZBE	UB#/LB# High to Data High-Z		25		30	
tABE	UB#/LB# Access Time		55		60	
Standard SRAM	/ Port Write Cycle					1
tWC	Write Cycle Time	55		60		ns
tSCS	CS# Low to Write End	45		50		ns
tAW	Address Valid to Write End	45		50	1	ns
tHA	Address Hold from Write End	0		0		ns
tSA	Address Set-up to Write Start	0		0	1	ns

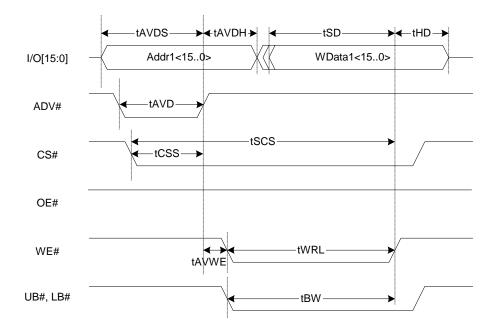
Switching Characteristics for V_{CC} = 1.8V Over the Operating Range ^[23] (continued)

Notes 25. AD Mux port timing applies to left AD Mux port and right port configured to AD Mux port. 26. Standard SRAM port timing applies to right port configured to standard SRAM port.

Parameter	Description	CYDMX256A16 CYDMX128A16 CYDMX064A16		CYDMX256A16 CYDMX128A16 CYDMX064A16		Unit
i di di litetei	Description	_(-65		-90	
		Min.	Max.	Min.	Max.	
tWRL	Write Pulse Width	40		45		ns
tSD	Data Set-up to Write End	30		30		ns
tHD	Data Hold from Write End	0		0		ns
tHZWE	WE# Low to Data High-Z		25		25	ns
tLZWE	WE# High to Data Low-Z	0		0		ns
Arbitration Timi	ing	·				•
tBLA	BUSY# Low from Address Match		45		50	ns
tBHA	BUSY# High from Address Mismatch		45		50	ns
tBLC	BUSY# Low from CS# Low		45		50	ns
tBHC	BUSY# High from CS# High		45		50	ns
tPS ^[27]	Port Set-Up fro Priority	0		5		
tBDD	BUSY# High to Data Valid		45		50	
tWDD	Write Pulse to Data Delay		80		85	
tDDD	Write Data Valid to Read Data Valid		65		70	
Interrupt Timing]	•	•	•	•	•
tINS	INT# Set Time		45		55	ns
tINR	INT# Reset Time		45		55	ns

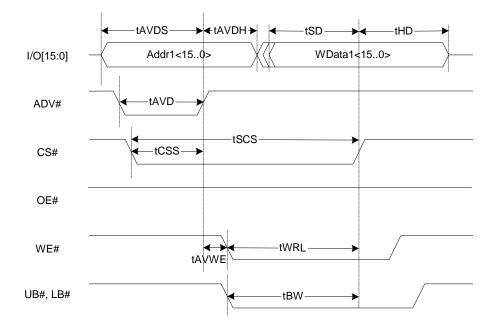

Switching Characteristics for $V_{CC} = 1.8V$ Over the Operating Range ^[23] (continued)

Notes 27. Add 2ns to this parameter if VCC and VDDIOR are <1.8V, and VDDIOL is >2.5V at temperature <0°C.

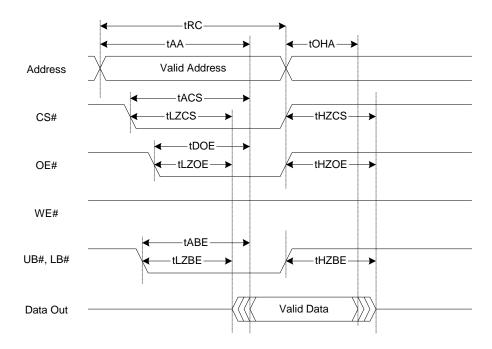


Switching Waveforms

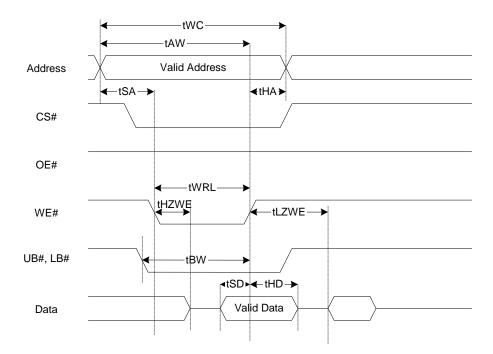
ADM Port Read Cycle (Either Port Access, WE# High)



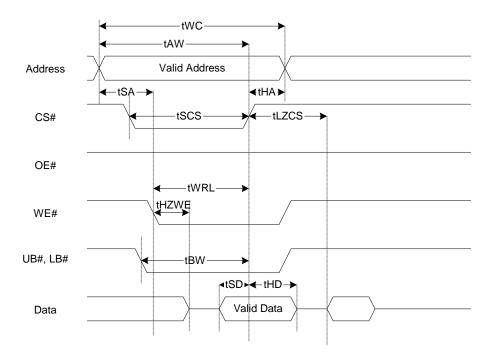
ADM Port Write Cycle (Either Port Access, WE# Controlled, OE# High)



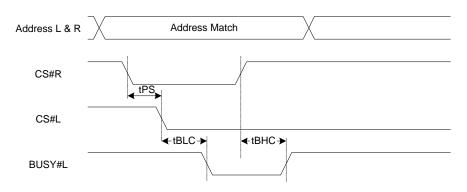
ADM Port Write Cycle (Either Port Access, CS# Controlled, OE# High)



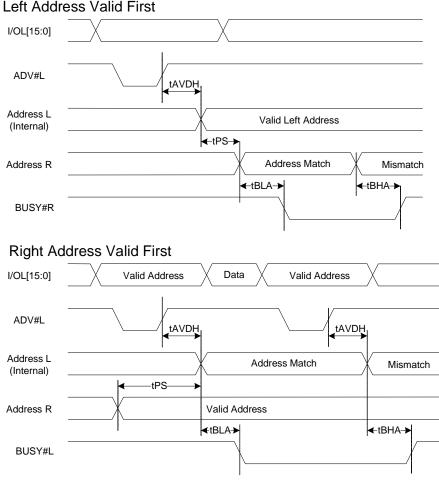
Standard Port Read Cycle (Right Port Access, WE# High)



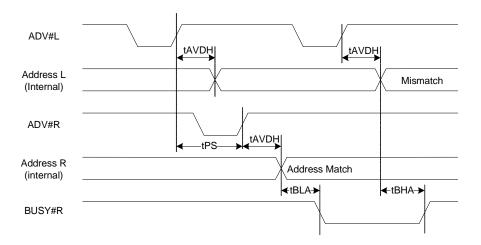
Standard Port Write Cycle (Right Port Access, WE# Controlled)

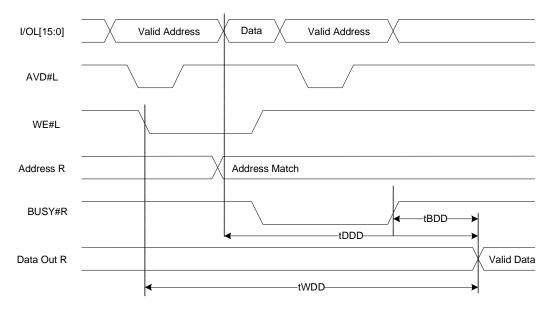


Standard Port Write Cycle (Right Port Access, CS# Controlled)

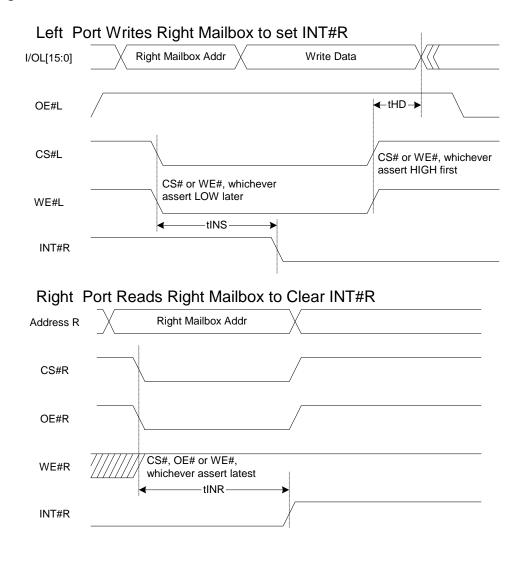


Arbitration Timing


Arbitration Timing (Address Controlled with Left ADM and Right Std Configuration


Left Address Valid First

Arbitration Timing (Address Controlled with Left ADM and Right ADM Configuration)



Read with BUSY# Timing

Interrupt Timing

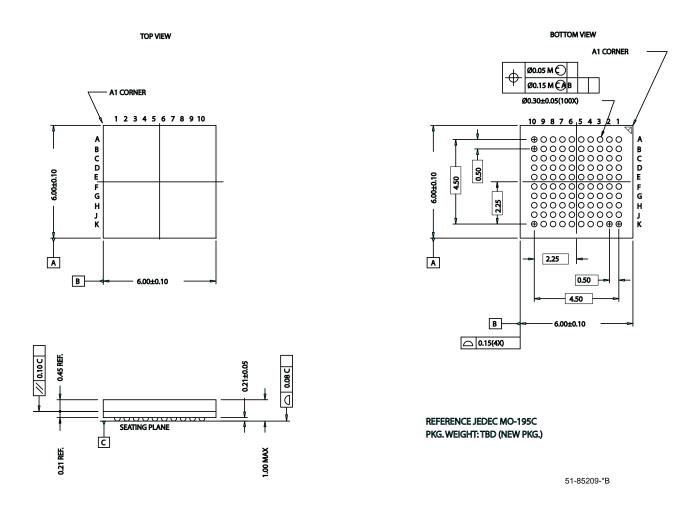
Part List

16k x16 MoBL ADM Asynchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
65	CYDMX256A16-65BVXI	BZ100	100-ball Lead-free 0.5-mm Pitch BGA	Industrial
90	CYDMX256A16-90BVXI	BZ100	100-ball Lead-free 0.5-mm Pitch BGA	Industrial

8k x16 MoBL ADM Asynchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
65	CYDMX128A16-65BVXI	BZ100	100-ball Lead-free 0.5-mm Pitch BGA	Industrial
90	CYDMX128A16-90BVXI	BZ100	100-ball Lead-free 0.5-mm Pitch BGA	Industrial


4k x16 MoBL ADM Asynchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
65	CYDMX064A16-65BVXI	BZ100	100-ball Lead-free 0.5-mm Pitch BGA	Industrial
90	CYDMX064A16-90BVXI	BZ100	100-ball Lead-free 0.5-mm Pitch BGA	Industrial

Package Diagram

Figure 2. 100 VFBGA (6 x 6 x 1.0 mm) BZ100A

MoBL is a registered trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

Page 21 of 22

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CYDMX256A16/CYDMX128A16/CYDMX064A16 16k/8k/4k x 16 MoBL® ADM Asynchronous Dual-Port Static RAM Final Data sheet Document Number: 001-08090

Document	Number: 00	1-08090		
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	462234	SEE ECN	HKH	New data sheet
*A	491702	SEE ECN	НКН	Removed none applicable timing tBW Revised standard port timing numbers Corrected typo
*В	500425	SEE ECN	НКН	Updated tWC, tSCS to reflect bin spec Added note for special condition of tPS Updated DC data that are previously TBD Added note for tLZOE that is garanteed by design by not tested
*C	2142766	SEE ECN	YDT	Relaxed -65 Standard port timing to match the standard port timing of -90

		Curren	t Timing	New Timing		
	Standard SR	AM Port Re	ad Cycle			
Parameter	Description	Min	Max	Min	Max	
tRC	Read Cycle Time	40		55		
tAA	Address to Data Valid		40		55	
toha	Output Hold from Address Change	5		5		
tACS	CS# to Data Valid		40		55	
tDOE	OE# Low to Data Valid		25		30	
tLZOE[24]	OE# Low to Data Low-Z	5		5		
tHZOE	OE# High to Data High-Z		10		25	
tLZCS	CS# Low to Data Low-Z	5		5		
tHZCS	CS# High to Data High-Z		10		25	
tLZBE	UB#/LB# Low to Data Low-Z	5		5		
tHZBE	UB#/LB# High to Data High-Z		10		25	
tABE	UB#/LB# Access Time		40		55	
	Standard SR	AM Port Wi	ite Cycle			
Parameter	Description	Min	Max	Min	Max	
tWC	Write Cycle Time	40		55		
tSCS	CS# Low to Write End	30		45		
tAW	Address Valid to Write End	30		45		
tHA	Address Hold from Write End	0		0		
tSA	Address Set-Up to Write Start	0		0		
tWRL	Write Pulse Width	25		40		
tSD	Data Set-Up to Write End	20		30		
tHD	Data Hold from Write End	0		0		
tHZWE	WE# Low to Data High-Z		15		25	
tLZWE	WE# High to Data Low-Z	0		0		
	Arbitra	ation Timin	g			
Parameter	Description	Min	Max	Min	Max	
tBLA	BUSY# Low from Address Match		30		45	
tBHA	BUSY# High from Address Match		30		45	
tBLC	BUSY# Low from CS# Low		30		45	
tBHC	BUSY# High from CS# High		30		45	
tPS[27]	Port Set-Up for Priority	5		5		
tBDD	BUSY# High to Data Valid		30		45	
tWDD	Write Pulse to Data Delay		55		80	
tDDD	Write Data Valid to Read Data Valid		45		65	
	Inter	rupt Timing				
Parameter	Description	Min	Max	Min	Max	
tINS	INT# Set Time		35		45	
tINR	INT# Reset Time		35		45	