	CPC1035N	Units
Blocking Voltage	350	$\mathrm{~V}_{\mathrm{p}}$
Load Current	100	mA
Max On-resistance	30	Ω

Features

- Small 4 Pin SOP Package
- Low Drive Power Requirements (TTL/CMOS Compatible)
- No Moving Parts
- High Reliability
- Arc-Free With No Snubbing Circuits
- $1500 \mathrm{~V}_{\text {rms }}$ Input/Output Isolation
- No EMI/RFI Generation
- Machine Insertable, Wave Solderable
- Tape \& Reel Version Available

Applications

- Telecommunications
- Telecom Switching
- Tip/Ring Circuits
- Modem Switching (Laptop, Notebook, Pocket Size)
- Hook Switch
- Dial Pulsing
- Ground Start
- Ringing Injection
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- Medical Equipment—Patient/Equipment Isolation
- Security
- Aerospace
- Industrial Controls

Description

The CPC1035N is a miniature 1-Form-A solid state relay in a 4 pin SOP package that employs optically coupled MOSFET technology to provide $1500 \mathrm{~V}_{\text {rms }}$ of input to output isolation. The efficient MOSFET switches and photovoltaic die use Clare's patented OptoMOS® architecture. The optically coupled input is controlled by a highly efficient GaAIAs infrared LED. The CPC1035N uses Clare's state of the art double molded vertical construction packaging to produce the world's smallest relay. The CPC1035N offers board space savings of at least 20% over the competitor's larger 4 pin SOP relay.

Approvals

- UL Recognized Component

File \#: E76270

- Certified to: EN60950 and IEC950

Ordering Information

Part \#	Description
CPC1035N	4 Pin SOP (100/tube)
CPC1035NTR	4 Pin SOP (2000/reel) picked from pin 1 side
CPC1035NTR-1	4 Pin SOP (100/tube) picked from pin 3 side

* For other packaging options consult factory.

Pin Configuration

CPC1035N Pinout

Switching Characteristics of Normally Open (Form A) Devices

Absolute Maximum Ratings (@ $25^{\circ} \mathrm{C}$)

Parameter	Ratings	Units
Blocking Voltage	350	$\mathrm{~V}_{\mathrm{p}}$
Reverse Input Voltage	5	V
Input control Current Peak (10ms)	50	mA
	1	A
Input Power Dissipation	150	mW
Total Power Dissipation	400^{1}	mW
Isolation voltage Input to Output	1500	$\mathrm{~V}_{\text {rms }}$
Operational Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
Soldering Temperature $(10$ seconds Max.)	+220	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Electrical Characteristcs

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Output Characteristics @ $25^{\circ} \mathrm{C}$						
Load Current ${ }^{1}$	Continuous	I_{L}	-	-	100	mA
Peak Load Current	10 ms	$\mathrm{I}_{\text {LPK }}$	-	-	350	mA
On-Resistance ${ }^{2}$	$\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$	$\mathrm{R}_{0 N}$	-	30	35	Ω
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=350 \mathrm{~V}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	$\mu \mathrm{A}$
Switching Speeds Turn-On	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$	$\mathrm{T}_{\text {ON }}$	-	-	2	ms
Turn-Off	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$	$\mathrm{T}_{\text {OFF }}$	-	-	1.0	ms
Output Capacitance	50V; f=1MHz	$\mathrm{C}_{\text {OUT }}$	-	25	-	pF
Input Characteristics @ $25^{\circ} \mathrm{C}$						
Input Control Current ${ }^{3}$	$\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$	$\mathrm{I}_{\text {F }}$	2	-	-	mA
Input Dropout Current	-	$\mathrm{I}_{\text {F }}$	0.3	0.9	-	mA
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	$V_{\text {F }}$	0.9	1.2	1.4	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	$\mathrm{I}_{\text {R }}$	-	-	10	$\mu \mathrm{A}$
Input to Output Characteristics @ $25^{\circ} \mathrm{C}$						
Capacitance Input to Output	-	-	-	1	-	pF

Load current derates linearly from 100 mA @ $25^{\circ} \mathrm{C}$ to $70 \mathrm{~mA} @ 85^{\circ} \mathrm{C}$
2 Measurement taken within 1 second of on time.
3^{3} For applications requiring high temperature operation (greater than $60^{\circ} \mathrm{C}$) an LED drive current of 10 mA is recommended.

PERFORMANCE DATA*

CPC1035N

CPC1035N

CPC1035N
Typical Turn-Off Time
(Ambient Temperature $=25^{\circ} \mathrm{C}$)

CPC1035N
Typical Blocking Voltage vs. Temperature

CPC1035N
Typical On-Resistance Distribution (Ambient Temperature $=25^{\circ} \mathrm{C}$) $($ Load Current $=100 \mathrm{~mA})$

CPC1035N

CPC1035N

CPC1035N
Typical Blocking Voltage Distribution (Ambient Temperature $=25^{\circ} \mathrm{C}$)

CPC1035N
Typical Turn-On Time (Ambient Temperature $=25^{\circ} \mathrm{C}$)

CPC1035N
Typical Leakage vs. Temperature

CPC1035N

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

PERFORMANCE DATA*

CPC1035N

CPC1035N
Typical Load Current vs. Load Voltage (Ambient Temperature $=25^{\circ} \mathrm{C}$)

CPC1035N
Typical Turn-On vs. LED Forward Current (Load Current $=100 \mathrm{~mA}$)

CPC1035N
Typical I_{F} for Switch Operation vs. Temperature

CPC1035N
Typical Turn-Off vs. LED Forward Current (Load Current $=100 \mathrm{~mA}$)

CPC1035N
Typical I_{F} for Switch Dropout vs. Temperature (Load Current $=50 \mathrm{~mA}$)

CLARE

PERFORMANCE DATA*

Tape and Reel Packaging for 4 pin SOIC package

NOTE: Tape dimensions not shown, comply with JEDEC Standard EIA-481-2

Dimensions:
mm
(inches)

For additional information please visit our website at: www.clare.com
$\overline{\text { Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product }}$ descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare's Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of Clare's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.

