

NEC's 7.5 V UHF BAND NE5511279A RF POWER SILICON LD-MOS FET

FEATURES

HIGH OUTPUT POWER:

Pout = 40.0 dBm TYP., f = 900 MHz, VDS = 7.5 V, Pout = 40.5 dBm TYP., f = 460 MHz, VDS = 7.5 V,

· HIGH POWER ADDED EFFICIENCY:

 η add = 48% TYP., f = 900 MHz, VDS = 7.5 V, η add = 50% TYP., f = 460 MHz, VDS = 7.5 V,

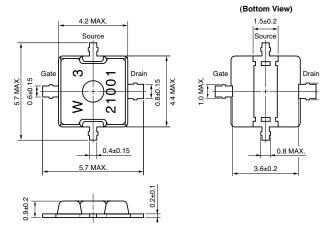
· HIGH LINEAR GAIN:

GL = 15.0 dB TYP., f = 900 MHz, VDS = 7.5 V,GL = 18.5 dB TYP., f = 460 MHz, VDS = 7.5 V,

SURFACE MOUNT PACKAGE:

5.7 x 5.7 x 1.1 mm MAX

· SINGLE SUPPLY:


VDS = 2.8 to 8.0 V

APPLICATIONS

- · UHF RADIO SYSTEMS
- CELLULAR REPEATERS
- **TWO-WAY RADIOS**
- · FRS/GMRS
- FIXED WIRELESS

OUTLINE DIMENSIONS (Units in mm)

PACKAGE OUTLINE 79A

DESCRIPTION

NEC's NE5511279A is an N-Channel silicon power laterally diffused MOSFET specially designed as the transmission power amplifier for 7.5 V radio systems. Die are manufactured using NEC's NEWMOS1 technology and housed in a surface mount package. This device can deliver 40.0 dBm output power with 48% power added efficiency at 900 MHz using a 7.5 V supply voltage.

ELECTRICAL CHARACTERISTICS (TA = 25°C)

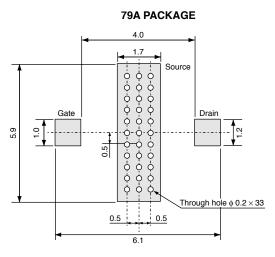
SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Pout	Output Power	38.5	40.0	-	dBm	f = 900 MHz, V _{DS} = 7.5 V,
ΙD	Drain Current	-	2.5	ı	Α	P _{in} = 27 dBm,
ηadd	Power Added Efficiency	42	48	ı	%	IDSQ = 400 mA (RF OFF)
GL	Linear Gain	-	15.0	ı	dB	Pin = 5 dBm
Pout	Output Power	-	40.5	_	dBm	f = 460 MHz, V _{DS} = 7.5 V,
ΙD	Drain Current	-	2.75	_	Α	P _{in} = 25 dBm,
ηadd	Power Added Efficiency	-	50	_	%	IDSQ = 400 mA (RF OFF)
GL	Linear Gain	-	18.5	-	dB	Pin = 5 dBm
Igss	Gate to Source Leak Current	-	-	100	nA	V _{GS} = 6.0 V
IDSS	Drain to Source Leakage Current (Zero Gate Voltage Drain Current)	-	-	100	nA	V _{DS} = 8.5 V
V _{th}	Gate Threshold Voltage	1.0	1.5	2.0	V	V _{DS} = 4.8 V, I _{DS} = 1.5 mA
Rth	Thermal Resistance	_	5	ı	°C/W	Channel to Case
g m	Transconductance	-	2.3	ı	S	V _{DS} = 3.5 V, I _{DS} = 900 mA
BVDSS	Drain to Source Breakdown Voltage	20	24	-	V	loss = 15 μA

Notes:

DC performance is 100% tested. RF performance is tested on several samples per wafer. Wafer rejection criteria for standard devices is 1 reject for several samples.

ABSOLUTE MAXIMUM RATINGS¹ (TA = 25 °C)

SYMBOLS	SYMBOLS PARAMETERS		RATINGS
VDS	Drain Supply Voltage ²	V	20.0
Vgs	Gate Supply Voltage	V	6.0
lD	Drain Current	Α	3.0
Ртот	Total Power Dissipation	W	20
Тсн	Channel Temperature	°C	125
Тѕтс	Storage Temperature	°C	-55 to +125


Note:

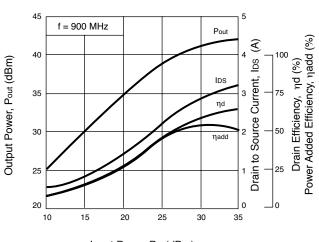
- 1. Operation in excess of any one of these parameters may result in permanent damage.
- 2. Vps must be used under 12 V on RF operation.

RECOMMENDED OPERATING LIMITS

SYMBOLS	PARAMETERS	UNITS	TYP	MAX
VDS	Drain to Source Voltage	V	7.5	8.0
Vgs	Gate Supply Voltage	V	2.0	3.0
IDS	Drain Current ¹	Α	2.5	3.0
Pin	Input Power f = 900 MHz, VDS = 7.5 V	dBm	27	30

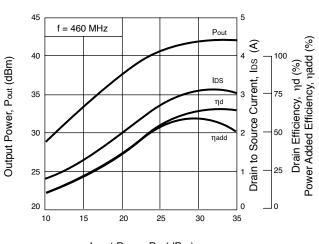
P.C.B. LAYOUT (Units in mm)

Note:


Use rosin or other material to prevent solder from penetrating through-holes.

ORDERING INFORMATION

PART NUMBER	QTY
NE5511279A-T1-A	 12 mm wide embossed taping. Gate pin faces the perforation side of the tape. 1 Kpcs/Reel
NE5511279A-T1A-A	


TYPICAL PERFORMANCE CURVES (TA = 25°C)

OUTPUT POWER, DRAIN CURRENT, η d, η add vs. INPUT POWER

Input Power,Pin (dBm) Input Power,Pin (dBm)

OUTPUT POWER, DRAIN CURRENT, $\eta \text{d},\, \eta \text{add}$ vs. INPUT POWER

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per pin of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350-P3

Caution Do not use different soldering methods together (except for partial heating).

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

California Eastern Laboratories, Your source for NEC RF, Microwave, Optoelectronic, and Fiber Optic Semiconductor Devices.
4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • FAX (408) 988-0279 • www.cel.com

DATA SUBJECT TO CHANGE WITHOUT NOTICE

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix –A indicates that the device is Pb-free. The –AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration in CEL		
Lead (Pb)	< 1000 PPM	-A Not Detected	-AZ (*)	
Mercury	< 1000 PPM	Not Detected		
Cadmium	< 100 PPM	Not Detected		
Hexavalent Chromium	< 1000 PPM	Not Detected		
PBB	< 1000 PPM	Not Detected		
PBDE	< 1000 PPM	Not Detected		

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.

See CEL Terms and Conditions for additional clarification of warranties and liability.