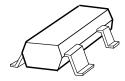
MSA-0611

Cascadable Silicon Bipolar MMIC Amplifier


Data Sheet

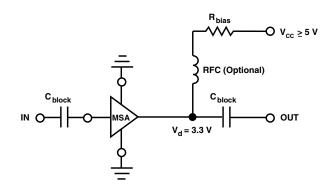
Description

The MSA-0611 is a low cost silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in the surface mount plastic SOT-143 package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

SOT-143 Package

Pin Connections and Package Marking


Notes:

Top View. Package Marking provides orientation and identification. "x" is the date code.

Features

- Cascadable 50Ω Gain Block
- 3 dB Bandwidth: DC to 0.7 GHz
- High Gain: 18.0 dB Typical at 0.5 GHz
- Low Noise Figure: 3.0 dB Typical at 0.5 GHz
- Low Cost Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available
- Lead-free Option Available

Typical Biasing Configuration

MSA-0611 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]
Device Current	40 mA
Power Dissipation ^[2,3]	125 mW
RF Input Power	+13 dBm
Junction Temperature	150°C
Storage Temperature	−65 to 150°C

Thermal Resistance ^[2] :	_
$\theta_{jc} = 505^{\circ}C/W$	

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 2.0 mW/°C for $T_C > 87$ °C.

Electrical Specifications $^{[1]}$, $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: I	Units	Min.	Тур.	Max.	
G _P	Power Gain (S ₂₁ ²)	f = 0.1 GHz f = 0.5 GHz	dB	16.0	19.5 18.0	
ΔG_P	Gain Flatness	f = 0.1 to 0.5 GHz	dB	10.0	±0.8	
f _{3 dB}	3 dB Bandwidth		GHz		0.7	
VSWR	Input VSWR	f = 0.1 to 1.5 GHz			1.6:1	
VOVIN	Output VSWR	f = 0.1 to 1.5 GHz			1.5:1	
NF	50 Ω Noise Figure	f = 0.5 GHz	dB		3.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 0.5 GHz	dBm		2.0	
IP ₃	Third Order Intercept Point	f = 0.5 GHz	dBm		14.0	
t _D	Group Delay	f = 0.5 GHz	psec		225	
V _d	Device Voltage	T _C = 25°C	V	2.6	3.3	4.0
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Note:

Ordering Information

Part Numbers	No. of Devices	Comments
MSA-0611-BLK	100	Bulk
MSA-0611-BLKG	100	Bulk
MSA-0611-TR1	3000	7" Reel
MSA-0611-TR1G	3000	7" Reel
MSA-0611-TR2	10000	13" Reel
MSA-0611-TR2G	10000	13" Reel

Note: Order part number with a "G" suffix if lead-free option is desired.

^{1.} The recommended operating current range for this device is 12 to 20 mA. Typical gain performance as a function of current is on the following page.

MSA-0611 Typical Scattering Parameters (Z $_0$ = 50 Ω , T_A = 25°C, I_d = 16 mA)

Freg.	S ₁	1		S ₂₁			S ₁₂			S ₂₂	
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
0.1	.04	-176	19.6	9.53	170	-23.0	.071	6	.04	-57	1.07
0.2	.03	-163	19.3	9.25	160	-22.7	.073	10	.07	-82	1.07
0.3	.03	-149	18.9	8.79	150	-22.8	.072	14	.09	-97	1.10
0.4	.04	-132	18.5	8.38	141	-21.9	.080	17	.11	-111	1.07
0.5	.05	-127	18.0	7.96	133	-21.6	.083	21	.13	-122	1.07
0.6	.07	-123	17.3	7.33	125	-21.2	.087	23	.15	-131	1.07
0.8	.10	-129	16.2	6.46	111	-19.7	.103	25	.17	-147	1.04
1.0	.13	-139	15.0	5.64	98	-19.0	.112	28	.18	-160	1.06
1.5	.22	-164	12.5	4.22	73	-17.1	.139	25	.19	175	1.07
2.0	.31	171	10.1	3.20	53	-16.1	.157	21	.19	160	1.13
2.5	.39	158	8.1	2.55	42	-15.4	.169	22	.20	153	1.19
3.0	.45	144	6.3	2.07	28	-15.0	.178	18	.19	150	1.26
3.5	.50	132	4.7	1.72	16	-14.6	.185	15	.16	152	1.33
4.0	.52	121	3.4	1.48	4	-14.1	.197	11	.14	166	1.37

Typical Performance, T_A = 25°C (unless otherwise noted)

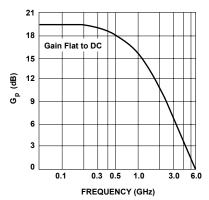


Figure 1. Power Gain vs. Frequency, $T_A = 25 C$, I_d = 16 mA.

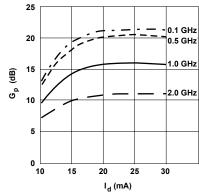


Figure 2. Power Gain vs. Current.

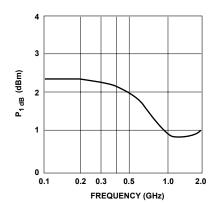


Figure 3. Output Power @ 1 dB Gain Compression vs. Frequency, $I_d = 16 \text{ mA}.$

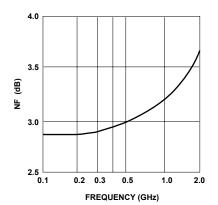
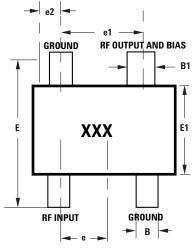
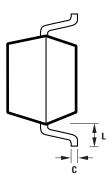




Figure 4. Noise Figure vs. Frequency, $I_d = 16 \text{ mA}.$

SOT-143 Package Dimensions

	DIMENSIONS (mm)				
SYMBOL	MIN.	MAX.			
Α	0.79	1.097			
A1	0.013	0.10			
В	0.36	0.54			
B1	0.76	0.92			
С	0.086	0.152			
D	2.80	3.06			
E1	1.20	1.40			
е	0.89	1.02			
e1	1.78	2.04			
e2	0.45	0.60			
E	2.10	2.65			
L	0.45	0.69			

Notes: XXX-package marking Drawings are not to scale

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

