MSA-0386

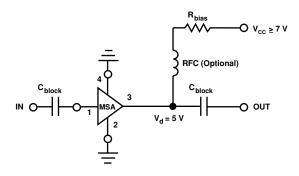
Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description

The MSA-0386 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz $\rm f_T$, 25 GHz $\rm f_{MAX}$, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


Features

- · Lead-free Option Available
- Cascadable 50Ω Gain Block
- · 3 dB Bandwidth: DC to 2.4 GHz
- 12.0 dB Typical Gain at 1.0 GHz
- 10.0 dBm Typical P_{1 dB} at 1.0 GHz
- Unconditionally Stable (k>1)
- · Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available

86 Plastic Package

Typical Biasing Configuration

MSA-0386 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	70 mA				
Power Dissipation ^[2,3]	400 mW				
RF Input Power	+13 dBm				
Junction Temperature	150°C				
Storage Temperature	−65 to 150°C				

Thermal Resistance ^[2] :	
$\theta_{\rm jc} = 115^{\circ}{ m C/W}$	

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 9.5 mW/°C for $T_{\rm C} > 116 ^{\circ}{\rm C}.$

Electrical Specifications $^{[1]}$, ${\rm T_A}=25^{\circ}{\rm C}$

Symbol	Parameters and Test Conditions:	Units	Min.	Тур.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz			12.5	
		f = 1.0 GHz		10.0	12.0	
ΔG_{P}	Gain Flatness	f = 0.1 to 1.6 GHz	dB		±0.7	
f3 dB	3 dB Bandwidth		GHz		2.4	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			1.5:1	
VSWIL	Output VSWR	f = 0.1 to 3.0 GHz			1.7:1	
NF	$50~\Omega$ Noise Figure	f = 1.0 GHz	dB		6.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		10.0	
IP3	Third Order Intercept Point	f = 1.0 GHz	dBm		23.0	
t_{D}	Group Delay	f = 1.0 GHz	psec		140	
V_{d}	Device Voltage		V	4.0	5.0	6.0
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Note:

Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-0386-BLK	100	Bulk		
MSA-0386-BLKG	100	Bulk		
MSA-0386-TR1	1000	7" Reel		
MSA-0386-TR1G	1000	7" Reel		
MSA-0386-TR2	4000	13" Reel		
MSA-0386-TR2G	4000	13" Reel		

Note: Order part number with a "G" suffix if lead-free option is desired.

^{1.} The recommended operating current range for this device is 20 to 40 mA. Typical performance as a function of current is on the following page.

MSA-0386 Typical Scattering Parame	ters ($\mathbf{Z}_0 = 50 \ \Omega$,	$T_{A} = 25^{\circ}C, I_{d} = 35 \text{ mA}$
------------------------------------	---------------------------------------	--

Freq.	S_{11}		\mathbf{S}_{21}		\mathbf{S}_{12}			\mathbf{S}_{22}		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.11	174	12.5	4.22	175	-18.3	.122	1	.13	-11
0.2	.11	169	12.5	4.20	170	-18.2	.124	2	.13	-20
0.4	.11	159	12.4	4.16	159	-18.1	.124	5	.14	-41
0.6	.10	149	12.2	4.09	149	-17.9	.128	8	.15	-60
0.8	.10	142	12.1	4.00	139	-17.6	.131	9	.16	-78
1.0	.09	137	11.9	3.93	129	-17.4	.136	11	.18	-93
1.5	.09	139	11.2	3.61	106	-16.6	.149	14	.20	-129
2.0	.12	149	10.3	3.28	83	-15.3	.171	13	.23	-157
2.5	.18	150	9.4	2.95	66	-14.4	.190	12	.26	-176
3.0	.25	142	8.3	2.60	48	-13.7	.207	9	.29	167
3.5	.32	133	7.2	2.29	31	-13.2	.219	3	.30	152
4.0	.40	124	6.0	2.01	15	-13.0	.224	-1	.31	142
5.0	.53	106	3.7	1.53	-13	-12.8	.228	-11	.32	128

Typical Performance, $T_A = 25^{\circ}C$ (unless otherwise noted)

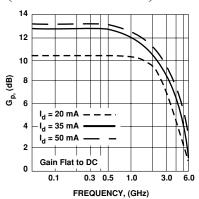


Figure 1. Typical Power Gain vs. Frequency, $T_A = 25^{\circ}\mathrm{C}$.

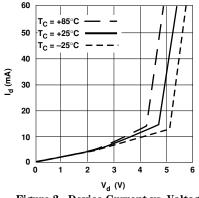


Figure 2. Device Current vs. Voltage.

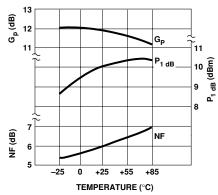


Figure 3. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz, $I_d = 35 \text{ mA}$.

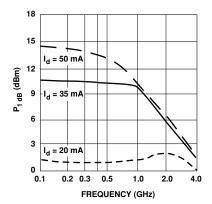


Figure 4. Output Power at 1 dB Gain Compression vs. Frequency.

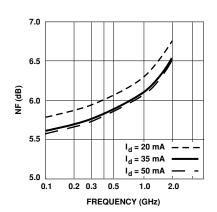
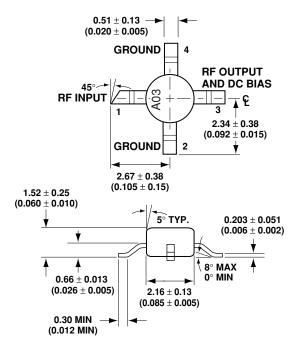



Figure 5. Noise Figure vs. Frequency.

86 Plastic Package Dimensions

DIMENSIONS ARE IN MILLIMETERS (INCHES)

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.

Data subject to change. Copyright © 2006 Avago Technologies, Limited. All rights reserved. Obsoletes 5989-2085EN

