

Advanced Datasheet AAT5102

2.5W/CH Stereo Class D Audio Power Amplifier

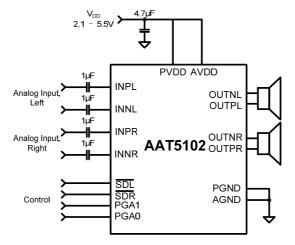
General Description

The AAT5102 is a high efficiency, high performance stereo class D audio amplifier. It is designed to operate in a wide supply voltage range from 2.1V to 5.5V and is targeted to deliver up to 2.5W output power to a 4Ω load with 5V power supply. Its up to 90.5% efficiency and space saving Wafer-level Chip Scale Package (WCSP) make it ideal for portable applications.

AAT5102 has four adjustable amplifier gains with 6, 12, 18 and 24dB programmed by two external pins. Two enable control pins are employed to control the left and right channels independently.

AAT5102 also integrates over-temperature and output short circuit protection circuitries to prevent the internal junction temperature over-heat and over-current case. The device will recover to normal operation when the fault condition is removed.

The AAT5102 is offered in a Pb-free, thermally enhanced, space-saving 1.61mmx 1.61mm 16-pin WCS package, and is specified for operation over the -40° C to $+85^{\circ}$ C ambient temperature range.

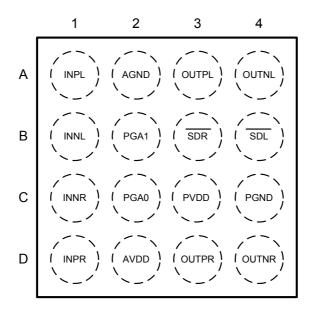

Features

- Wide Supply Voltage Range (2.1V to 5.5V)
 - Maximum Battery Life and Minimum Heat
 - 4.28mA Quiescent Current at 3.6V V_{DD}
 - <1µA Shutdown Current
 - Up to 90.5% Efficiency
- Output Power at 10% THD+N
 0 2.5W x2 to 4Ω at 5V V_{DD}
 - \circ ~ 1.6W x2 to 80 at 5V V_{DD}
- High Performance
 - THD+N of 0.03%, at 5V V_{DD}, 8Ω Load and P_{OUT} = 1.0W
 - $\circ~$ SNR of 98dB at 5V $V_{\text{DD}},$ 8 Ω Load and 1% THD+N
- Shutdown Control
 - o Independent Control per Channel
 - o Internal 300kΩ Pull-down Resistors
- Filter-less Capability
- Four Programmable Gains: 6, 12, 18 and 24dB
- Thermal and Short-circuit Protection with Auto-recovery
- Excellent PSRR
- Building-in Pop-click Suppression Circuitry
- 1.61mm x 1.61mm 16-Pin WCS Package

Applications

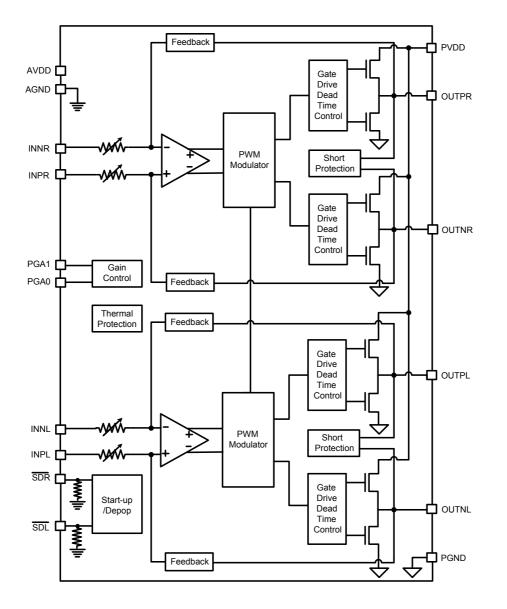
- Cellular Phones
- MP4s
- Notebook Computers
- PDAs
- Portable DVD Players

Typical Application Circuits



Pin Descriptions

Pin #	Symbol	Description	
A1	INPL	Analog positive input, left channel	
B1	INNL	Analog negative input, left channel	
D1	INPR	Analog positive input, right channel	
C1	INNR	Analog negative input, right channel	
A3	OUTPL	Power stage positive output, left channel	
A4	OUTNL	Power stage negative output, left channel	
D3	OUTPR	Power stage positive output, right channel	
D4	OUTNR	Power stage negative output, right channel	
B2	PGA1	PGA gain control, TTL compatible	
C2	PGA0	PGA gain control, TTL compatible	
B3	SDR	Right channel shutdown control (active low)	
B4	SDL	Left channel shutdown control (active low)	
D2	AVDD	Analog power supply	
C3	PVDD	Power supply for output drivers	
A2	AGND	Analog power ground	
C4	PGND	Power ground for output drivers	


Pin Configurations

WCSP-16 TOP VIEW

Functional Block Diagram

Absolute Maximum Ratings¹

$T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Description	Value	Units
V _{DD}	Supply Voltage	-0.3 to 6.0	
V _{IN}	Digital Input to Ground ($\overline{^{\mathrm{SDR}}}$, $\overline{^{\mathrm{SDL}}}$,PGA1 and PGA0 Pins)	-0.3 to V _{DD} +0.3	V
TJ	Maximum Junction Operating Temperature Range	-40 to +150	
T _{LEAD}	Maximum Soldering Temperature (at leads, 10 sec)	300	°C
T _{STG}	Storage Temperature Range	-65 to 150	

Recommended Operating Conditions

Description	Symbol	Min	Max	Unit
Supply Voltage	V _{DD}	2.1	5.5	V
High-level Input Voltage	V _{IH}	1.3	V _{DD}	V
Low-level Input Voltage	V _{IL}	0	1.2	V
Operating Temperature	T _A	-40	85	°C

Thermal Information²

Symbol	Description		Value	Units
Θ_{JA}	Thermal Resistance	WCSP-16	TBD	°C/W
P _D	Maximum Power Dissipation	WCSP-16	TBD	W

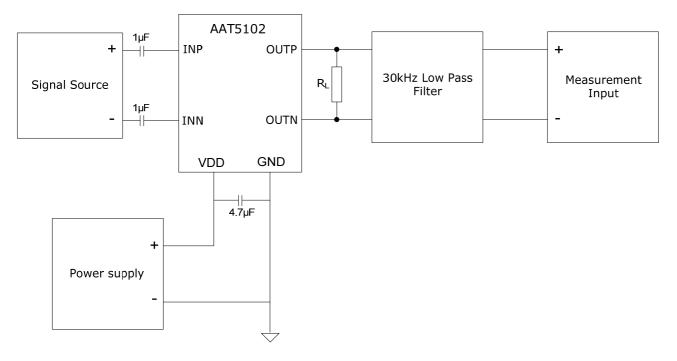
2. Mounted on 1.6mm thick FR4 material printed circuit board.

^{1.} Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.

Electrical Characteristics

V_{DD} =5.0V, C_{S} =4.7 μ F, C_{I} =1 μ F, R_{L} =8 Ω and Gain=6dB. T_{A} = 25°C unless otherwise noted.
--

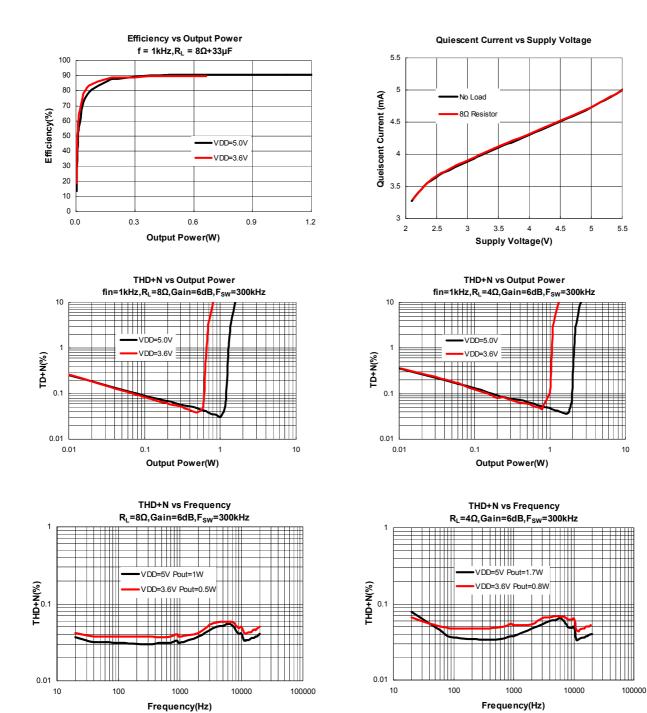
Symbol	Description	Conditions	Min	Тур	Max	Units	
DC Chara	cteristics						
V _{DD}	Supply Voltage		2.1		5.5	V	
V _{OS}	Output Offset Voltage			5		mV	
		$V_{DD} = 5.5V, \ \overline{SDR} = \overline{SDL} = high, No Load$		5.01			
Ι _Q	Operation Quiescent Current	$V_{DD} = 3.6V, \ \overline{SDR} = \overline{SDL} = high, No Load$		4.28		mA	
		$V_{DD} = 2.1V, \ \overline{SDR} = \overline{SDL} = high, No Load$		3.27			
I _{SD(OFF)}	Shutdown Supply Current	$\overline{\text{SDR}} = \overline{\text{SDL}} = \text{low}$, No load		0.1	1	μA	
		PGA1=low, PGA0=high		15			
Р	Input Impedance	PGA1=high, PGA0=low		30		kΩ	
Rı		PGA1=high, PGA0=high		15			
		PGA1=low, PGA0=high		15			
		PGA1=low, PGA0=low		6		dB	
Qain	Amplifier Closed Loop	PGA1=low, PGA0=high		12		dB	
Gain	Voltage Gain	PGA1=high, PGA0=low		18		dB	
		PGA1=high, PGA0=high		24		dB	
R _{DS(ON)}	Output On-Resistance	V _{DD} =5V		345		mΩ	
	Resistance from						
$R_{\overline{SD}}$	$\overline{\text{SDR}}/\overline{\text{SDL}}$ to GND			300		kΩ	
V _{IH}	High-level Input Voltage	SDR, SDL, PGA1, PGA0	1.5				
VIL	Low-level Input Voltage	SDR, SDL, PGA1, PGA0			0.5	V	
	Over Temperature Shutdown			150			
T_{SD}	Threshold			150		°c	
т	Over Temperature Shutdown			20			
T _{HYS}	Hysteresis			20			



$V_{\text{DD}}\text{=}5.0V,$ $C_{\text{S}}\text{=}4.7\mu\text{F},$ $C_{\text{I}}\text{=}1\mu\text{F},$ $R_{\text{L}}\text{=}8\Omega$ and Gain=6dB. T_{A} = 25°C unless otherwise noted.

Symbol	Description	Conditions		Min	Тур	Max	Units
AC Chara	cteristics						
F _{sw}	Switch Frequency				300		kHz
		THD+N=10%, f=1kHz,	V _{DD} =5.0V		1.61		
		R _L = 8Ω	V _{DD} =3.6V		0.82		
		THD+N=1%, f=1kHz,	V _{DD} =5.0V		1.31		
D	Output Dawar	R _L = 8Ω	V _{DD} =3.6V		14/		
P _{OUT}	Output Power	THD+N=10%, f=1kHz,	V _{DD} =5.0V		2.66		W
		$R_L = 4\Omega$	V _{DD} =3.6V		1.35		
		THD+N=1%, f=1kHz,	V _{DD} =5.0V		2.13		
		$R_L = 4\Omega$	V _{DD} =3.6V		1.08		
η	Output Power Efficiency	V _{DD} =5.0V,f=1kHz,P _{OUT} =1.2	2W		90.5		%
			V _{DD} =5.0V,		0.03		%
THD+N	Total Harmonic Distortion +	f=1kHz, R_L =8 Ω ,	P _{OUT} =1W		0.03		%
	Noise	Gain=6dB	V _{DD} =3.6V,		0.04		
			P _{OUT} =0.5W		0.04		
V	Noise Output Voltage	V _{DD} =3.6V,f=20Hz~20kHz,	A-weighting		28		
V_{NO}	Noise Oulput Voltage	Inputs AC-grounded	A-weighting		20		μV
SNR	Signal to Noise Ratio	V _{DD} =5.0V,f=1kHz,THD+N=	:1%		98		dB
Crosstalk	Channel Separation	V _{DD} =5.0V,f=1kHz			TBD		dB
PSRR	Power Supply Ripple	V_{DD} =3.6V, V_{RIPPLE} =200m	/ _{pp} , f=217Hz, Inputs		-63		dB
FORK	Rejection Ratio	AC- grounded			-03	-03	uв
CMRR	Common Mode Ripple	1/2 = 3.61/2 / 2.2 = 11/2 =	=217Hz		-70		dB
CMRR Rejection Ratio		V_{DD} =3.6V, V_{RIPPLE} = 1 V_{pp} , f=217Hz			-70		UD
T _{ON}	Turn-On time				2		ms
T_{OFF}	Turn-Off time				3		ms

Test Set-up for Typical Characteristics Graphs (per channel)^{1 2}


Test Set-up for Typical Characteristics Graphs.

¹ A 33µH inductor was placed in series with load resistor to emulate a small speaker for efficiency measurement.

 $^{^2}$ The 30 kHz low-pass filter is required even if the analyzer has an internal low-pass filter. An RC low pass filter (100 Ω , 47nF) is used on each output for the data sheet graphs.

Typical Characteristics

www.analogictech.com

Application Information

AAT5102 is a closed loop pulse-width-modulated switch mode power amplifier for driving bridge-tied load. It features high performance with high efficiency, high SNR and low THD+N. It also builds in protections such as over-temperature and output short protection.

Gain Setting

The AAT5102 voltage gain can be programmed to 6, 12, 18 and 24dB via two inputs, PGA1 and PGA0. See table1 for gain setting.

PGA1	PGA0	Voltage GAIN (dB)	Input Impedance (kΩ)
0	0	6	30
0	1	12	15
1	0	18	30
1	1	24	15

Table1 Gain Setting

Input High-Pass Filter

 C_{IN} is the input DC blocking capacitor which forms input high pass filter with amplifier input impedance. The corner frequency is determined from the equation:

$$f_{-3dB} = \frac{1}{2 \cdot \pi \cdot R_I \cdot C_I}$$

Where:

 $f_{\mbox{-}3dB}$ is -3dB corner frequency

 R_I is the input resistance

C_I is the input capacitance

The value of C_1 is important for bass performance of amplifier. The capacitors should have a tolerance of ±10% or better.

Manufacturer	Value (µF)	Voltage (V)	Case Size	Part Number
Murata	1	16	0603	GRM188R71C105KA12

Table 2: Recommended Input Capacitor Selection Information

Power Supply Bypassing

The AAT5102 is a high performance Class-D amplifier, adequate supply decoupling is necessary for overall better performance. A good low equivalent series resistance (ESR) decoupling capacitor of 4.7µF or larger is recommended.

Manufacturer	Value (µF)	Voltage (V)	Case Size	Part Number
Murata	4.7	6.3	0603	GRM188R60J475KE19
	.			

Table 3: Recommended Decoupling Capacitor Selection Information

Thermal Protection

The AAT5102 features unlatched over temperature protection. During operation when the device junction temperature exceeds 150°C (typical), the device enters into shutdown state and outputs are disabled. Once device junction temperature is reduced by 20°C, the device leaves shutdown state and back to normal operation automatically.

Output Short Protection

The output short protection in AAT5102 provides short protection between output-to-output, output-to-supply and output-to-ground. When output short-circuit detected, the device output stage will be disabled immediately. Once the shorts removed, normal operation will be restored automatically.

Shutdown Mode

When $\overline{\text{SDR}}/\overline{\text{SDL}}$ is pulled down to low voltage, the device is in its maximum power saving mode. In the shut down mode, outputs are pulled in weak low state. The high logic level applied on $\overline{\text{SDR}}/\overline{\text{SDL}}$ wakes up the device after turn-on time (T_{ON}).

Output Filter

A ferrite bead should be used to reduce EMI emissions if EMI sensitive devices nearby in the system. The ferrite bead acts essentially as high impedance to a high frequency emissions but very low impedance to low frequency signal. Choose the ferrite bead with high impedance at the frequency range of interest.

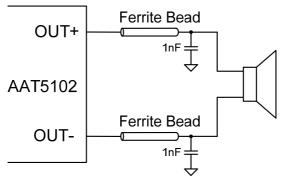


Figure 1. Typical Ferrite Bead Filter

Manufacturer	Part Number	Impedance (Ω)[100MHz]	Rated Current (A) Max	DCR	Thickness (mm)	Case Size
TDK	MPZ1608S221A	220±25%	2	0.05	0.8	0603

Table 4: Recommended Output Ferrite Bead Selection Information.

Thermal Considerations and Max output power

The AAT5102 delivers a 5W power to 4Ω speaker. The limiting characteristic for the maximum output power is essentially package power dissipation and the device internal thermal limit.

At any given ambient temperature (T_A) , the maximum package power dissipation can be determined by the following equation:

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_A}{\theta_{IA}}$$

The $T_{J (MAX)}$, the maximum junction temperature for the device is 150°C. The package thermal resistance θ_{JA} is TBD°C/W for the WCSP-16 package. For example, given $T_A=25^{\circ}$ C, from above formula, the maximum power dissipation is TBDW. With given efficiency η , the max output power can be determined by the following equation:

$$P_{O(MAX)} = \frac{P_{D(MAX)}}{1 - \eta}$$

V_{DD} 2.1 - 5.5V

1µF

Single-Ended

Application Circuits

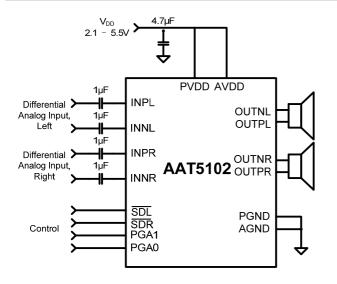


Figure 2. AAT5102 Application Schematic With Differential Input and Input Capacitors

INPL Analog Input, OUTNL Left 1µF OUTPL INNL 1μF Single-Ended Analog Input, XRight INPR OUTNR 1μF AAT5102 OUTPR INNR SDL PGND SDR PGA1 AGND Control PGA0

PVDD AVDD

Figure 3. AAT5102 Application Schematic With Single-Ended Input

Evaluation Board Schematics

Evaluation Board Layout

Ordering Information

Package	Part Marking	Part Number
WCSP-16		

Package Information

AAT5102

2.5W/CH Stereo Class D Audio Power Amplifier

© Advanced Analogic Technologies, Inc. AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. AnalogicTech warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with AnalogicTech's standard warranty. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed. AnalogicTech and the AnalogicTech logo are trademarks of Advanced Analogic Technologies Incorporated. All other brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.

Advanced Analogic Technologies, Inc.

3230 Scott Blvd., Santa Clara, CA 95043 Phone (408) 737-4600 Fax (408) 737-4611

AAT5102

2.5W/CH Stereo Class D Audio Power Amplifier