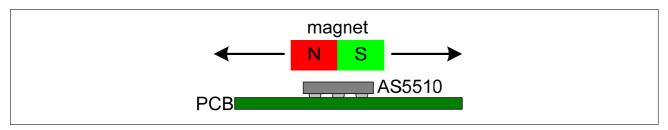


AS5510 Data Sheet

Linear Hall Sensor with I²C Output

1 General Description


The AS5510 is a linear Hall sensor with 10 bit resolution and I²C interface. It can measure absolute position of lateral movement of a simple 2-pole magnet.

Depending on the magnet size, a lateral stroke of 0.5~2mm can be measured with air gaps around 1.0mm.

To conserve power, the AS5510 may be switched to a power down state when it is not used.

It is available in a WLCSP package and qualified for an ambient temperature range from -20°C to +85°C.

Figure 1. Linear Position Sensor with AS5510 + Magnet

2 The AS5510-AB Adapterboard

The AS5510 adapter board is a simple circuit allowing to test and evaluate the AS5510 linear encoder quickly without having to build a test fixture or PCB.

The adapterboard must be attached to a microcontroller via the I^2C bus, and supplied with a voltage of 2.5V ~ 3.6V. A simple 2-pole magnet is placed on the top of the encoder

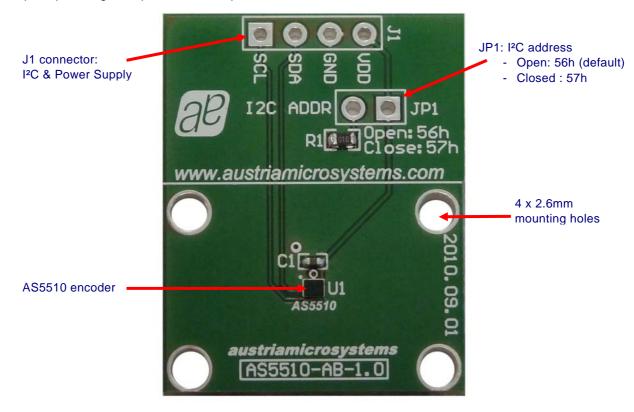
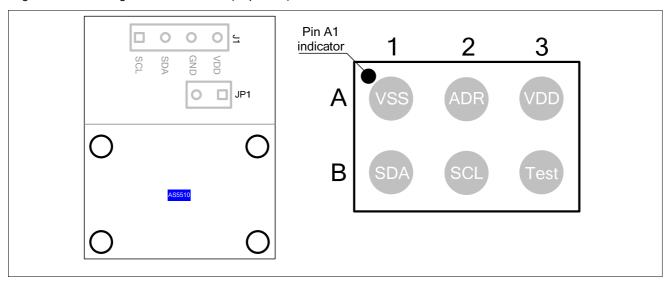


Figure 2: AS5510 Adapterboard

3 Table of Contents

1		1
2	The AS5510-AB Adapterboard	1
3	Table of Contents	2
4	Pinout	
	4.1 Pin Assignments	
4	4.2 Pin Description	3
5	Operation	4
	5.1 Mounting the AS5510 Adapter Board	
į	5.2 Hardware	7
į	5.3 Software	8
6	AS5510 adapterboard hardware	g
(6.1 AS5510-AB-1.0 Schematics	g
(6.2 AS5510-AB-1.0 PCB Layout	10
7	Revision History	11
8	Copyrights	12
a	Disclaimer	12



4 Pinout

4.1 Pin Assignments

The AS5510 is available in a 6-pin Chip Scale Package with a ball pitch of 400 μm .

Figure 3. Pin Configuration of AS5510 (Top View)

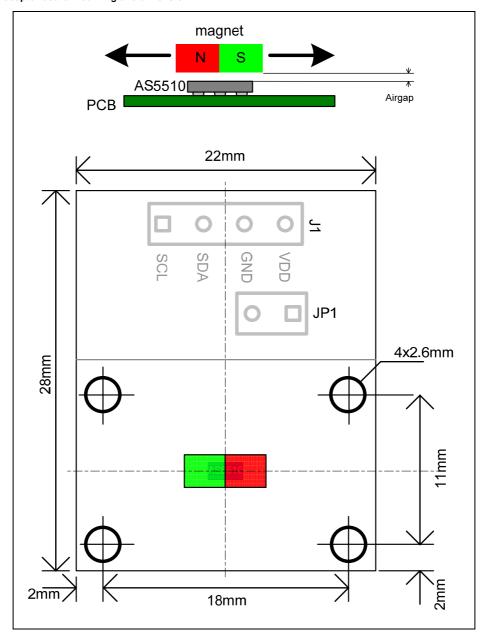
4.2 Pin Description

Table 1. Pin Description AS5510

Pin	Pin	Symbol	Туре	Description	
AB board	AS5510				
J1: pin 3	A1	VSS	S	Negative supply pin, analog and digital ground.	
JP1:	A2 ADR	DI	I ² C address selection pin		
Pin 2		ADK	Di	Pull down by default (56h). Close JP1 for (57h)	
J1: pin 4	А3	VDD	S Positive supply pin, 2.5V ~ 3.6V		
J1: pin 2	B1	SDA	DI/DO_OD I ² C data I/O, 20mA driving capability		
J1: pin 1	B2	SCL	DI I ² C clock		
n.c.	В3	Test	DIO	Test pin, connected to VSS	

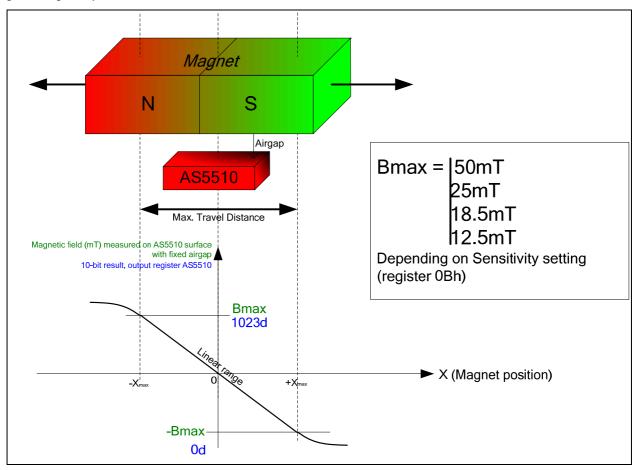
DO_OD digital output open drain

DI digital input
DIO digital input/output


S supply pin

5 Operation

5.1 Mounting the AS5510 Adapter Board


Figure 4: AS5510 adapter board mounting and dimension

The AS5510-AB can be fixed to an existing mechanical system by its four mounting holes. A simple 2-poles magnet placed over or under the IC can be used.

Figure 5: Magnet requirement

The maximum horizontal travel amplitude depends on the magnet shape and size and magnetic strength (magnet material and airgap).

In order to measure a mechanical movement with a linear response, the magnetic field shape at a fixed airgap must be like on *Figure 5: Magnet requirement* .

The linear range width of the magnetic field between North and South poles determines the maximum travel size of the magnet. The minimum (-Bmax) and maximum (+Bmax) magnetic field values of the linear range must be lower or equal to one of the four sensitivities available on the AS5510 (register 0Bh):

Sensitivity =
$$\pm$$
 50mT, \pm 25mT, \pm 18.5mT, \pm 12.5mT

The 10-bit output register D[9..0] OUTPUT = Field_(mT) * (511/Sensitivity) + 511

Example 1:

This is the ideal case: the linear range of the magnet is ±25mT, which fits to the ±25mT sensitivity setting of the AS5510. The resolution of displacement vs. output value is optimal.

Max. Travel Distance $TD_{max} = \pm 1mm (X_{max} = 1mm)$

Sensitivity = ±25mT (Register 0Bh ← 01h)

$$\begin{array}{lll} Bmax = 25mT & \rightarrow X = -1mm \ (= -X_{max}) & Field_{(mT)} = -25mT & OUTPUT = 0 \\ & \rightarrow X = 0mm & Field_{(mT)} = 0mT & OUTPUT = 511 \\ & \rightarrow X = +1mm \ (= +X_{max}) & Field_{(mT)} = +25mT & OUTPUT = 1023 \end{array}$$

Dynamic range of OUTPUT over ± 1 mm: DELTA = 1023 - 0 = 1023 LSB

Resolution = TD_{max} / DELTA = 2mm / 1024 = 1.95 μ m/LSB

Example 2:

Using the same settings on the AS5510, the linear range of the magnet over the same displacement of ±1mm is now ±20mT instead of ±25mT due to a higher airgap or a weaker magnet. In that case the resolution of displacement vs. output value is lower.

Max. Travel Distance $TD_{max} = \pm 1 mm$ ($X_{max} = 1 mm$): unchanged

Sensitivity = ±25mT (Register 0Bh ← 01h) : unchanged

 $\begin{array}{lll} \text{Bmax} = 20\text{mT} & \rightarrow \text{X} = -1\text{mm} \; (= -\text{X}_{\text{max}}) & \text{Field}_{(\text{mT})} = -20\text{mT} & \text{OUTPUT} = 102 \\ & \rightarrow \text{X} = 0\text{mm} & \text{Field}_{(\text{mT})} = 0\text{mT} & \text{OUTPUT} = 511 \\ & \rightarrow \text{X} = +1\text{mm} \; (= +\text{X}_{\text{max}}) & \text{Field}_{(\text{mT})} = +20\text{mT} & \text{OUTPUT} = 920 \end{array}$

Dynamic range of OUTPUT over ±1mm: DELTA = 920 - 102 = 818 LSB

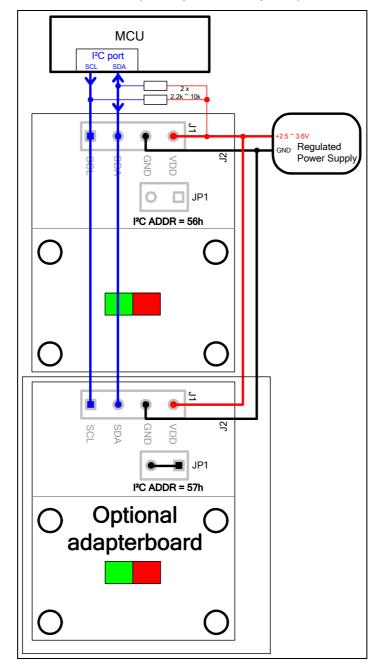
Resolution = TD_{max} / DELTA = 2mm / 818 = 2.44 μ m/LSB

In order to keep the best resolution of the system, it is recommended to adapt the sensitivity as close as the Bmax of the magnet, with Bmax < Sensitivity to avoid the saturation of the output value.

If a magnet holder is used, this one ferromagnetic in order to keep the maximum magnetic field strength and maximum linearity.

Materials as brass, copper, aluminium, stainless steel are the best choices to make this part.

5.2 Hardware


Two wires (I2C) only are required for the communication with the host MCU.

Pull-up resistors are needed on both SCL and SDA line. The value depends on the length of the wires, and the amount of slaves on the same I²C line.

The power supply delivering between $2.7 \text{V} \sim 3.6 \text{V}$ is connected to the adapter board and the pull-up resistors.

A second AS5510 adapterboard (optional) can be connected on the same line. In that case, the I^2C address must be changed by closing JP1 with a wire.

Figure 6. Typical connection to a host MCU (2nd adapterboard is optional).

5.3 Software

After powering up the system, a delay of >1.5ms must be performed before the first I²C Read/Write command with the AS5510.

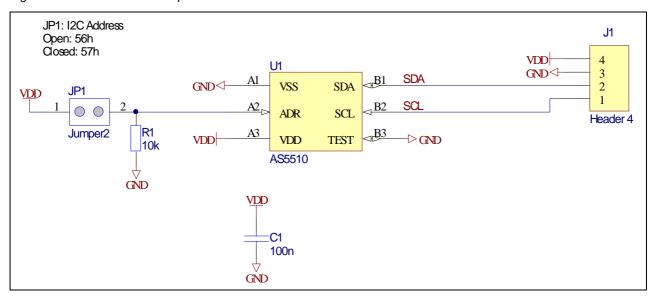
The initialization after power up is optional. It consists of:

- Sensitivity configuration (Register 0Bh)
- Magnet polarity (Register 02h bit 1)
- Slow or Fast mode (Register 02h bit 3)
- Power Down mode (Register 02h bit 0)

Reading the magnetic field value is straight forward. The following source code reads the 10-bit magnetic field value, and converts to the magnetic field strength in mT (millitesla).

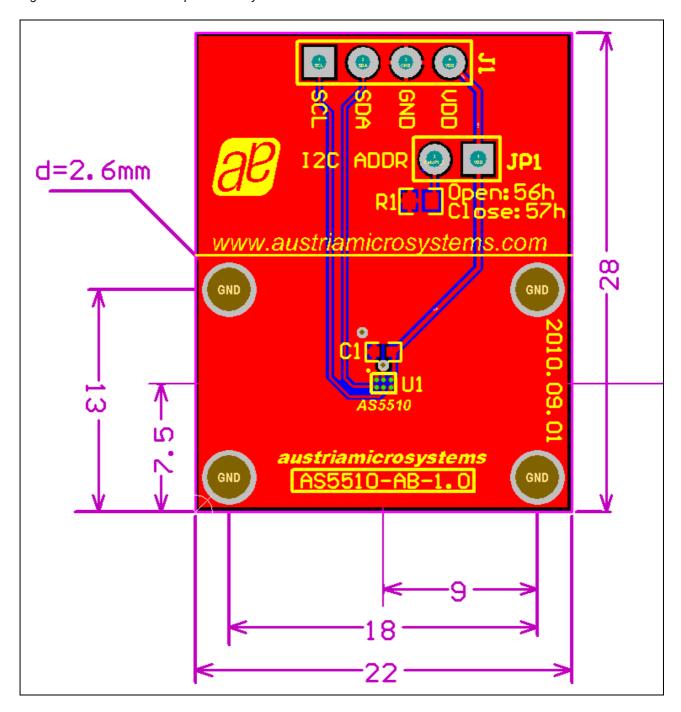
Example: Sensitivity configured to +-50mT range (97.66mT/LSB), Polarity = 0, this is the default setting:

- D9..0 value = 0 means -50mT on the hall sensor.
- D9..0 value = 511 means 0mT on the hall sensor (no magnetic field, or no magnet).
- D9..0 value = 1023 means +50mT on the hall sensor.


```
Void main_loop(unsigned char Sensitivity_Mode)
      unsigned char Data1, Data2;
      short value;
                                // 10-bit output value (0~1023)
                                // The value 511 is the middle point @ 0mT
      float magnetic_field;
                                // Value of the magnetic field in mT
      Data_LSB = I2C_Read8(I2C_ADDR, 0x00); // Read D7..0
      Data_MSB = I2C_Read8(I2C_ADDR, 0x01); // Read D9..8 + OCF + Parity
      value = ((Data_MSB & 0x03)<<8) + Data_LSB;</pre>
      switch (Sensitivity_Mode) // Sensitivity_Mode is the value stored in
                                // register OBh
      {
                          // Register [0Bh] <= 0 (+- 50mT range, 97.66uT/LSB)</pre>
             case 0:
                          magnetic_field = (value - 511) * 0.09766;
                          break;
             case 1:
                          // Register [OBh] <= 0 (+- 25mT range, 48.83uT/LSB)
                          magnetic_field = (value - 511) * 0.04883;
                          break;
             case 2:
                          // Register [OBh] <= 0 (+- 12.5mT range, 24.41uT/LSB)
                          magnetic_field = (value - 511) * 0.02441;
                          break;
             case 3:
                          // Register [OBh] <= 0 (+- 18.7mT range, 36.62uT/LSB)
                          magnetic_field = (value - 511) * 0.03662;
                          break;
      }
      printf("Decimal 10-bit value = %u \n", value);
      printf("Magnetic field value = %.3fmT \n", magnetic_field);
}
```


6 AS5510 adapterboard hardware

6.1 AS5510-AB-1.0 Schematics


Figure 7. AS5510-AB-1.0 adapterboard schematics

6.2 AS5510-AB-1.0 PCB Layout

Figure 8. AS5510-AB-1.0 adapterboard layout

7 Revision History

Table 2. Revision History

Revision No.	Description	Change Date
0.1	Initial revision	17. Sep. 2010

8 Copyrights

Copyright © 2010, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria – Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

All products and companies mentioned are trademarks or registered trademarks of their respective companies.

9 Disclaimer

Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application.

The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services.

Contact Information

Headquarters

austriamicrosystems AG A-8141 Schloss Premstaetten, Austria

Tel: +43 (0) 3136 500 0 Fax: +43 (0) 3136 525 01

For Sales Offices, Distributors and Representatives, please visit:

http://www.austriamicrosystems.com/contact